데이터셋 상세
미국
Bolocam Galactic Plane Survey Catalog v1
The Version 2 release (hereafter v2) of the BGPS data includes images and a catalog. It is described in Ginsburg et al (2013).The new images have improved fidelity and more uniform noise. The fields include all those in the original v1 release and some new data. There are new fields included in the BGPS v2 release, primarily in the outer galaxy but including some expansions in the inner galaxy. These include M17, IRAS 22172, a significant expansion in l and b around the l=110 region, Mon R2, NGC 2264, parts of the Orion A and B clouds, Sharpless 235, and scattered IRAS+CO selected fields at longitude 119, 123, 126, 129, 154, 169, 181, 182, 195, 201, and 217. IRSA provides a coverage map.There is a new catalog associated with the v2 images. The sources were extracted using Bolocat with parameters set in the same way as for the v1 catalog. There are many sources in v1 that are not in v2 and vice-versa. These discrepancies occur primarily for faint sources with low signal-to-noise. Objects in both catalogs are likely to be real since catalog parameters were selected to minimize false positives. Changing the quality of the images and the structure of the noise highlights some new objects and obscures others. The v2 catalog has about a 75% overlap with the v1 catalog. The differences are explored in more detail in the Ginsburg et al (2013).The flux calibration offset identified in the version 1 data is now understood. The version 2 data are brighter, on average, by approximately a factor 1.5, but the factor varies from source to source. The v2 catalog should be used instead of the v1 catalog. The source of the error was the incorrect application of a flux calibration solution.Contreras et al (2013) noted a 4.7 arcsecond offset between the BGPS v1 catalog and the ATLASGAL catalog. We believe this is caused by an offset of that magnitude (~3-4 arcseconds) in a few fields that have an inordinate number of sources extracted; the pointing accuracy in the vast majority of the BGPS fields, based on a comparison to Herschel Hi-Gal images, is better than 4 arcseconds, but the mean offset is within 2 arcseconds of zero.
데이터 정보
연관 데이터
Bolocam Galactic Plane Survey Catalog v2.1
공공데이터포털
The Version 2 release (hereafter v2) of the BGPS data includes images and a catalog. It is described in Ginsburg et al (2013).The new images have improved fidelity and more uniform noise. The fields include all those in the original v1 release and some new data. There are new fields included in the BGPS v2 release, primarily in the outer galaxy but including some expansions in the inner galaxy. These include M17, IRAS 22172, a significant expansion in l and b around the l=110 region, Mon R2, NGC 2264, parts of the Orion A and B clouds, Sharpless 235, and scattered IRAS+CO selected fields at longitude 119, 123, 126, 129, 154, 169, 181, 182, 195, 201, and 217. IRSA provides a coverage map.There is a new catalog associated with the v2 images. The sources were extracted using Bolocat with parameters set in the same way as for the v1 catalog. There are many sources in v1 that are not in v2 and vice-versa. These discrepancies occur primarily for faint sources with low signal-to-noise. Objects in both catalogs are likely to be real since catalog parameters were selected to minimize false positives. Changing the quality of the images and the structure of the noise highlights some new objects and obscures others. The v2 catalog has about a 75% overlap with the v1 catalog. The differences are explored in more detail in the Ginsburg et al (2013).The flux calibration offset identified in the version 1 data is now understood. The version 2 data are brighter, on average, by approximately a factor 1.5, but the factor varies from source to source. The v2 catalog should be used instead of the v1 catalog. The source of the error was the incorrect application of a flux calibration solution.Contreras et al (2013) noted a 4.7 arcsecond offset between the BGPS v1 catalog and the ATLASGAL catalog. We believe this is caused by an offset of that magnitude (~3-4 arcseconds) in a few fields that have an inordinate number of sources extracted; the pointing accuracy in the vast majority of the BGPS fields, based on a comparison to Herschel Hi-Gal images, is better than 4 arcseconds, but the mean offset is within 2 arcseconds of zero.
Bolocam Galactic Plane Survey Distance Catalog
공공데이터포털
The Bolocam Galactic Plane Survey (BGPS) is a 1.1 mm continuum survey of the Galactic Plane made using Bolocam on the Caltech Submillimeter Observatory. Millimeter-wavelength thermal dust emission reveals the repositories of the densest molecular gas, ranging in scale from cores to whole clouds. By pinpointing these regions, the connection of this gas to nascent and ongoing star formation may be explored. The BGPS coverage totals 170 square degrees (with 33" FWHM effective resolution). The survey is contiguous over the range -10.5 ≤ l ≤ 90.5, |b| ≤ 0.5. Towards the Cygnus X spiral arm, the coverage was flared to |b| ≤ 1.5 for 75.5 ≤ l ≤ 87.5. In addition, cross-cuts to |b| ≤ 1.5 were made at l = 3, 15, 30 and 31. The total area of this section is 133 square degrees. With the exception of the increase in latitude, no pre-selection criteria were applied to the coverage in this region. In addition to the contiguous region, four targeted regions in the outer Galaxy were observed: IC1396 (9 square degrees, 97.5 ≤ l ≤ 100.5, 2.25 ≤ l ≤ 5.25), a region towards the Perseus Arm (4 square degrees centered on l = 111, b=0 near NGC7538), W3/4/5 (18 square degrees, 132.5 ≤ l ≤ 138.5) and Gem OB1 (6 square degrees, 187.5 ≤ l ≤ 193.5). The survey has detected approximately 8,400 sources, to an rms noise level in the maps ranging from 30 to 60 mJy beam-1. The BGPS survey and catalog provide an important database for sub/millimeter observations with the Herschel Space Observatory, ALMA, SCUBA-2, APEX, and others.
Chandra Galactic Bulge Survey Full X-Ray Point Source Catalog
공공데이터포털
This table contains the Chandra source list for the entire area of the Galactic Bulge Survey (GBS) based on the lists provided in Jonker et al. (2011, ApJ, 194, 18: Paper I) and Jonker et al. (2014, ApJS, 210, 18: Paper II). The previous version of this table, based solely on the data presented in Paper I, contained the Chandra source list based on the first three-quarters of the GBS that had been observed as of the date of writing of that paper. Among the goals of the GBS are constraining the neutron star (NS) equation of state and the black hole (BH) mass distribution via the identification of eclipsing NS and BH low-mass X-ray binaries (LMXBs). The latter goal will, in addition, be obtained by significantly enlarging the number of BH systems for which a BH mass can be derived. Further goals include constraining X-ray binary formation scenarios, in particular the common envelope phase and the occurrence of kicks, via source-type number counts and an investigation of the spatial distribution of X-ray binaries, respectively. The GBS targets two strips of 6 degrees by 1 degrees (12 deg2 in total), one above (1o < b < 2o) and the other below (-2o < b < -1o) the Galactic plane in the direction of the Galactic center at X-ray, optical and near-infrared wavelengths. By avoiding the Galactic plane (-1o < b < 1o) the authors limit the influence of extinction on the X-ray and optical emission but still sample relatively large number densities of sources. The survey is designed such that a large fraction of the X-ray sources can be identified from their optical spectra. The X-ray survey, by design, covers a large area on the sky while the depth is shallow, using 2 ks per Chandra pointing. In this way, the authors maximize the predicted number ratio of (quiescent) LMXBs to cataclysmic variables. The survey is approximately homogeneous in depth to a 0.5-10 keV flux of 7.7 x 10-14 erg cm-2 s-1. As of Paper I, the authors had covered about three-fourths (8.3 deg2) of the projected survey area with Chandra observations providing 1234 unique X-ray sources. In Paper II, the authors find 424 additional X-ray sources in the 63 Chandra observations that they report on there. In the papers, the authors discuss the characteristics and the X-ray variability of the brightest of the sources as well as the radio properties from existing radio surveys. They point out an interesting asymmetry in the number of X-ray sources as a function of their Galactic l and b coordinates which is probably caused by differences in average extinction towards the different parts of the GBS survey area. This table was originally ingested by the HEASARC in June 2011 based on an electronic version of Table 3 from Paper I which was obtained from the ApJS web site. The current version of this table was ingested by the HEASARC in January 2014 based on CDS catalog J/ApJS/210,18 file cxogbs.dat, which appears to be the combination of an Table 3 from Paper I with Table 1 from Paper II. This is a service provided by NASA HEASARC .
APOGLIMPSE Catalog
공공데이터포털
The APOGLIMPSE project re-images 53 square degrees of the inner Galactic plane that have also been targeted by the APOGEE/APOGEE-2 surveys - Sloan III and IV programs to obtain high resolution H band spectroscopy for hundreds of thousands of red giants. The data will be combined with the original GLIMPSE observations of the Galactic plane in 2004-2005 to measure the proper motions of the sources along the Galactic plane over the past decade.
NGC 1399 Chandra X-Ray Source Catalog
공공데이터포털
This table contains results from a wide-field study of the globular cluster (GC)/low-mass X-ray binary (LMXB) connection in the giant elliptical NGC 1399. The large field of view of the Advanced Camera for Surveys/WFC, combined with the high resolution of the Hubble Space Telescope and Chandra, allow the authors to constrain the LMXB formation scenarios in elliptical galaxies. They confirm that NGC 1399 has the highest LMXB fraction in GCs of all nearby elliptical galaxies studied so far, even though the exact value depends on galactocentric distance due to the interplay of a differential GC versus galaxy light distribution and the GC color dependence. In fact, LMXBs are preferentially hosted by bright, red GCs out to > 5 Reff of the galaxy light. The finding that GCs hosting LMXBs follow the radial distribution of their parent GC population argues against the hypothesis that the external dynamical influence of the galaxy affects the LMXB formation in GCs. On the other hand, field-LMXBs closely match the host galaxy light, thus indicating that they are originally formed in situ and not inside GCs. The authors measure GC structural parameters, finding that the LMXB formation likelihood is influenced independently by mass, metallicity, and GC structural parameters. In particular, the GC central density plays a major role in predicting which GCs host accreting binaries. Finally, this analysis shows that LMXBs in GCs are marginally brighter than those in the field, and in particular the only color-confirmed GC with LX > 1039 erg/s shows no variability, which may indicate a superposition of multiple LMXBs in these systems. The optical data were taken with the ACS on board the HST (GO-10129), in the F606W filter. A detailed description of the HST data and source catalogs are given in Puzia T.H. et al. 2011, in preparation. The X-ray data were retrieved from the Chandra public archive (CXC). The authors selected observations 319 (ACIS-S; 2000 Jan 18) and 1472 (ACIS-I; 2003 May 26). This table contains the list of 230 X-ray sources detected in the overlap region common to Chandra ACIS-I, Chandra ACIS-S and HST ACS observation (see Fig 1 of the reference paper). Details of the X-ray source detection methodology are given in Section 2.2 of the reference paper. This table was created by the HEASARC in January 2013 based on the CDS Catalog J/ApJ/736/90 file table3.dat. This is a service provided by NASA HEASARC .
USNO-B Catalog ConeSearch
공공데이터포털
USNO-B is an all-sky catalog that presents positions, proper motions, magnitudes in various opticalpassbands, and star/galaxy estimators for 1,042,618,261 objects derived from 3,643,201,733 separateobservations. The data were obtained from scans of 7435 Schmidt plates taken for the various sky surveysduring the last 50 years. USNO-B1.0 is believed to provide all-sky coverage, completeness down to V = 21,0>2 astrometric accuracy at J2000, 0.3 mag photometric accuracy in up to five colors, and 85% accuracy fordistinguishing stars from nonstellar objects.A more detailed description of the construction and contents of the USNO-B1 catalog can be found in Monet et al. (2003, "The USNO-B Catalog", AJ, 125, 984), http://www.usno.navy.mil/USNO/astrometry/optical-IR-prod/usno-b1.0/resolveuid/41be0c1a4d1a8372289bad3baf27cde5.A mirror of USNOB exists in the MAST holdings and is thus available as a cone search.All available catalogs are listed at http://archive.stsci.edu/vo/mast_services.html.
Candidate Gamma-Ray Blazar Survey Source Catalog
공공데이터포털
The authors have constructed a uniform all-sky survey of bright blazars, selected primarily by their flat radio spectra, that is designed to provide a large catalog of likely gamma-ray active galactic nuclei (AGNs). The defined sample, the Candidate Gamma-Ray Blazar Survey (CGRaBS) source catalog, has 1625 targets with radio and X-ray properties similar to those of the EGRET blazars, spread uniformly across the |b| > 10 degrees sky. They also report progress toward optical characterization of the sample; of objects with known red magnitude R < 23, 85% have been classified and 81% have measured redshifts. One goal of this program is to focus attention on the most interesting (e.g., high-redshift, high-luminosity, etc.) sources for intensive multi-wavelength study during the observations by the Large Area Telescope (LAT) on the Gamma-Ray Large-Area Space Telescope (GLAST) satellite observatory. This table was created by the HEASARC in April 2008 based on an electronic version of Table 2 of the reference paper obtained from the electronic ApJS web site. This is a service provided by NASA HEASARC .
ChaMPlane Galactic Bulge and Center X-Ray Source Catalog
공공데이터포털
This table contains the Chandra Multiwavelength Plane (ChaMPlane) Survey catalog of X-ray point sources in the window and four Galactic bulge fields, specifically all source detections with net counts >= 1 in the 0.3-8 keV broad band. In the reference paper, the authors present the log N-log S and spatial distributions of X-ray point sources in seven Galactic bulge (GB) fields within 4 degrees of the Galactic center (GC). They compare the properties of 1159 X-ray point sources discovered in their deep (100 ks) Chandra observations of three low extinction Window fields near the GC with the X-ray sources in the other GB fields centered around Sgr B2, Sgr C, the Arches Cluster, and Sgr A* using Chandra archival data. To reduce the systematic errors induced by the uncertain X-ray spectra of the sources coupled with field-and-distance-dependent extinction, they classify the X-ray sources using quantile analysis and estimate their fluxes accordingly. The result indicates that the GB X-ray population is highly concentrated at the center, more heavily than the stellar distribution models. It extends out to more than 1.4 degrees from the GC, and the projected density follows an empirical radial relation inversely proportional to the offset from the GC. They also compare the total X-ray and infrared surface brightness using the Chandra and Spitzer observations of the regions. The radial distribution of the total infrared surface brightness from the 3.6-micron band images appears to resemble the radial distribution of the X-ray point sources better than that predicted by the stellar distribution models. Assuming a simple power-law model for the X-ray spectra, the closer to the GC, the intrinsically harder the X-ray spectra appear, but adding an iron emission line at 6.7 keV in the model allows the spectra of the GB X-ray sources to be largely consistent across the region. This implies that the majority of these GB X-ray sources can be of the same or similar type. Their X-ray luminosity and spectral properties support the idea that the most likely candidate is magnetic cataclysmic variables (CVs), primarily intermediate polars (IPs). Their observed number density is also consistent with the majority being IPs, provided the relative CV to star density in the GB is not smaller than the value in the local solar neighborhood. This table was created by the HEASARC in January 2010, based on the electronic version of Table 2 from the reference paper, which was obtained from the Astrophysical Journal web site. This is a service provided by NASA HEASARC .
VLA A2390 Cluster of Galaxies 1.4-GHz Source Catalog
공공데이터포털
This table contains the 1.4-GHz source catalog for the field of the cluster of galaxies A2390 as observed with the Very Large Array (VLA). This is one of the deepest radio images of a cluster field ever taken. The image covers an area of 34' x 34' with a synthesized beam of ~1.4" and a noise level of ~5.6 µJy (µJy) near the field center. In the reference paper, the authors construct differential number counts for the central regions (radius < 16') of this cluster, and find that the faint (S1.4GHz < 3 mJy) counts of A2390 are roughly consistent with the lowest blank field number counts. Their analyses indicate that the number counts are primarily from field radio galaxies. The authors suggest that the disagreement of their number counts for this cluster with those from a similarly deep observation of A370 that was also presented in the reference paper can be largely attributed to cosmic variance. The authors observed the A2390 cluster field with the VLA in the A configuration for ~31.4hr on-source during 2008 October. The field center is located at 21:53:36 +17:41:52 (J2000). This table was created by the HEASARC in August 2017 based on CDS Catalog J/ApJS/202/2/ file table2.dat. This file contained 699 entries for sources detected at 1.4 GHz in the A370 field, as well as 524 entries for sources detected at 1.4 GHz in the A2390 field. Only the latter are included in this HEASARC table, while the former can be found in the HEASARC's VLA3701P4 table. This is a service provided by NASA HEASARC .
EXOSAT/ME Galactic Plane Survey
공공데이터포털
This catalog is based on information contained in Warwick et al (1988), MNRAS, 232, 551. The distribution of 2-6 keV x-ray emission in the galactic plane in the first and fourth galactic quadrants has been measured in a series of scanning observations with the medium-energy progportional counters on EXOSAT. The results are presented as contour maps and in the form of a catalogue of 70 discrete sources. Additional references can be found under the reference parameter. Additional information can be obtained upon request from the HEASARC. This is a service provided by NASA HEASARC .