데이터셋 상세
미국
Chandra ACIS Survey for X-Ray AGN in Nearby Galaxies
The authors searched the public archive of the Chandra X-ray Observatory as of 2016 March and assembled a sample of 719 galaxies within 50 Mpc with available Advanced CCD Imaging Spectrometer observations. By cross-correlation with the optical or near-infrared nuclei of these galaxies, 314 of them are identified to have an X-ray active galactic nucleus (AGN). The majority of them are low-luminosity AGNs and are unlikely X-ray binaries based upon their spatial distribution and luminosity functions. The AGN fraction is around 60% for elliptical galaxies and early-type spirals, but drops to roughly 20% for Sc and later types, consistent with previous findings in the optical. However, the X-ray survey is more powerful in finding weak AGNs, especially from regions with active star formation that may mask the optical AGN signature. For example, 31% of the H II nuclei are found to harbor an X-ray AGN. For most objects, a single power-law model subject to interstellar absorption is adequate to fit the spectrum, and the typical photon index is found to be around 1.8. For galaxies with a non-detection, their stacked Chandra image shows an X-ray excess with a luminosity of a few times 10<sup>37</sup> erg/s on average around the nuclear region, possibly composed of faint X-ray binaries. This paper reports on the technique and results of the survey; in-depth analysis and discussion of the results were to be reported in forthcoming papers, e.g., She et al. (2017, ApJ, 842, 131). The sample was assembled based on Chandra/ACIS observations that were publicly available as of 2016 March. The authors first generated a full list of ACIS observations, and then searched in the NASA/IPAC Extragalactic Database (NED) for galaxies within 50 Mpc whose nuclear positions were less than 8 arcminutes from the aim point of any Chandra observation. The adopted distances were taken from NED, in the following order of priority: surface brightness fluctuations, Cepheid variables, tip of the red giant branch, Type Ia supernovae, the fundamental plane, Faber-Jackson relation, Tully-Fisher relation. If more than one reference is available for the distance by the same means, the latest one is selected, unless otherwise specified. Whenever possible, the authors obtain positions of the galaxy nuclei based on measurements from near-infrared images, which suffer from less obscuration by dust or confusion from young star-forming regions. Most of the data come from the Two-Micron All Sky Survey (2MASS) extended source catalog (Skrutskie et al. 2006, AJ, 131, 1163), or NED otherwise. In a few cases, the NED positions come from radio observations. The authors discarded galaxies whose nuclear positions in NED were obtained from X-ray observations. This table was created by the HEASARC in September 2017 based upon the <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/ApJ/835/223">CDS Catalog J/ApJ/835/223</a> files table1.dat, table2.dat and table4.dat. This is a service provided by NASA HEASARC .
데이터 정보
연관 데이터
Chandra ACIS Survey of Nearby Galaxies X-Ray Point Source Catalog
공공데이터포털
The Chandra data archive is a treasure trove for various studies, and in this study the author exploits this valuable resource to study the X-ray point source populations in nearby galaxies. By 2007 December 14, 383 galaxies within 40 Mpc with isophotal major axes above 1 arcminute had been observed by 626 public ACIS observations, most of which were for the first time analyzed by this survey to study the X-ray point sources. Uniform data analysis procedures were applied to the 626 ACIS observations and led to the detection of 28,099 point sources, which belong to 17,559 independent sources. These include 8700 sources observed twice or more and 1000 sources observed 10 times or more, providing a wealth of data to study the long-term variability of these X-ray sources. Cross-correlation of these sources with galaxy isophotes led to 8,519 sources within the D25 isophotes of 351 galaxies, 3,305 sources between the D25 and 2 * D25 isophotes of 309 galaxies, and an additional 5,735 sources outside the 2 * D25 isophotes of galaxies. This survey has produced a uniform catalog, by far the largest, of 11,824 X-ray point sources within 2 * D25 isophotes of 380 galaxies. Contamination analysis using the log N-log S relation shows that 74% of the sources within the 2 * D25 isophotes above 1039 erg s-1, 71% of the sources above 1038 erg s-1, 63% of the sources above 1037 erg s-1, and 56% of all sources are truly associated with the galaxies. Meticulous efforts have identified 234 X-ray sources with galactic nuclei of nearby galaxies. This archival survey leads to 300 ultraluminous X-ray sources (ULXs) with LX in the 0.3-8 keV band >= 2 x 1039 erg s-1 within the D25 isophotes, 179 ULXs between the D25 and the 2 * D25 isophotes, and a total of 479 ULXs within 188 host galaxies, with about 324 ULXs truly associated with the host galaxies based on the contamination analysis. About 4% of the sources exhibited at least one supersoft phase, and 70 sources are classified as ultraluminous supersoft sources with LX (0.3-8 keV) >= 2 x 1038 erg s-1. With a uniform data set and good statistics, this survey enables future works on various topics, such as X-ray luminosity functions for the ordinary X-ray binary populations in different types of galaxies, and X-ray properties of galactic nuclei. This table contains the list of 17,559 'independent' X-ray point sources that was contained in table 4 of the reference paper. As the author notes in Section 5 of this paper, there are 341 sources projected within 2 galaxies with overlapping domains which are listed for both galaxies. The 5,735 sources lieing outside the 2* D25 isophotes of the galaxies are also included in this table. For these sources, the X-ray luminosities are computed as if they were in a galaxy of that group, which may or may not be the case; thus, they may not be their 'true' luminosities, but are listed for the purposes of comparison. This table was created by the HEASARC in March 2011 based on the electronic version of Table 4 of the reference paper which was obtained from the Astrophysical Journal web site. Some of the values for the name parameter in the HEASARC's implementation of this table were corrected in April 2018. This is a service provided by NASA HEASARC .
M 81 Chandra X-Ray Discrete Source Catalog
공공데이터포털
A Chandra X-Ray Observatory ACIS-S imaging observation is used to study the population of X-ray sources in the nearby (3.6 Mpc) Sab galaxy M 81 (NGC 3031). A total of 177 sources are detected, with 124 located within the D_25 isophote to a limiting X-ray luminosity of ~ 3 x 1036 erg/s. Source positions, count rates, luminosities in the 0.3 - 8.0 keV band, limiting optical magnitudes, and potential counterpart identifications are tabulated. Spectral and timing analysis of the 36 brightest sources are reported, including the low-luminosity active galactic nucleus, SN 1993J, and the Einstein-discovered ultraluminous X-ray source X6. The primary X-ray data set is a 49926 s observation of M81 obtained on 2000 May 7 with the Chandra Advanced CCD Imaging Spectrometer (ACIS) spectroscopy array operating in imaging mode. The X-ray data were reprocessed by the Chandra X-ray Center (CXC) on 2001 January 4. These reprocessed data were used in this work. There are no significant differences between the reprocessed data and the originally distributed data analyzed by Tennant et al. (2001ApJ...549L..43T). The observation was taken in faint timed exposure mode at 3.241 s/frame at a focal plane temperature of -120 C. Standard CXC processing has applied aspect corrections and compensated for spacecraft dither. The primary target, SN 1993J, was located near the nominal aimpoint on the back-illuminated (BI) device S3. The nucleus of M81 lies 2.79' from SN 1993J toward the center of S3 in this observation. Accurate positions of these two objects and two G0 stars located on device S2 were used to identify any offset and to determine absolute locations of the remaining Chandra sources as well as objects in other X-ray images and those obtained at other wavelengths. No offset correction was applied to the Chandra X-ray positions. This table was created by the HEASARC in March 2007 based on the CDS table J/ApJS/144/213, files table2.dat and table3.dat. This is a service provided by NASA HEASARC .
M 83 Chandra X-Ray Point Source Catalog
공공데이터포털
The authors of this table have obtained a series of deep X-ray images of the nearby (4.61 Mpc) galaxy M 83 using Chandra, with a total exposure of 729 ks. Combining the new data with earlier archival observations totaling 61 ks, they find 378 point sources within the D25 contour of the galaxy. The authors find 80 more sources, mostly background active galactic nuclei (AGNs), outside of the D25 contour. Of the X-ray sources, 47 have been detected in a new radio survey of M 83 obtained using the Australia Telescope Compact Array (ATCA). Of the X-ray sources, at least 87 seem likely to be supernova remnants (SNRs), based on a combination of their properties in X-rays and at other wavelengths. The authors attempt to classify the point source population of M 83 through a combination of spectral and temporal analysis. As part of this effort, in the reference paper they carry out an initial spectral analysis of the 29 brightest X-ray sources. The soft X-ray sources in the disk, many of which are SNRs, are associated with the spiral arms, while the harder X-ray sources, mostly X-ray binaries (XRBs), do not appear to be. After eliminating AGNs, foreground stars, and identified SNRs from the sample, the authors construct the cumulative luminosity function (CLF) of XRBs brighter than 8 x 1035 erg s-1. Despite M 83's relatively high star formation rate, the CLF indicates that most of the XRBs in the disk are low mass X-ray binaries (XRBs). The X-ray observations of M 83 in this survey were all carried out with the ACIS-S in order to maximize the sensitivity to soft X-ray sources, such as SNRs, and to diffuse emission. The nucleus of M 83 was centered in the field of the back-illuminated S3 chip to provide reasonably uniform coverage of M 83. In addition to the S3 chip, data were also obtained from chips S1, S2, S4, I2, and I3. All of the observations were made in the "very faint" mode to optimize background subtraction. Observations were spaced over a period of one year from 2010 December to 2011 December, as indicated in Table 1 of the reference paper. The only difference among observations was the roll orientation of the spacecraft and the differing exposure times. All of the observations were nominal, and yielded a total of 729 ks of useful data. In order to maximize their sensitivity and more importantly to improve their ability to identify time variable sources, the authors included in their analysis earlier Chandra observations of M 83 in 2000 and 2001 totaling 61 ks which were obtained by G. Rieke (Prop ID. 1600489) and by A. Prestwich (Prop ID. 267005758). These data were obtained in a very similar manner to that of the present survey, and increased the total exposure to 790 ks. The authors used ACIS EXTRACT (AE) to derive net count rates from the sources in various energy bands: 0.35 - 8.0 keV (total or T), 0.35 - 1.1 keV (soft or S), 1.1 - 2.6 keV (medium or M), 2.6 - 8.0 keV (hard or H), 0.5 - 2.0 keV ("normal" soft band) and 2.0 - 8.0 keV ("normal" hard band). Their choice of these bands was based on a variety of overlapping goals. The broad 0.35 - 8.0 keV band samples the full energy range accessible to Chandra observations. The three bands S, M and H provide energy ranges intended to classify sources on the basis of their hardness ratios. The boundary at 1.1 keV, in particular, is just above the region containing strong features due to Ne and Fe seen in the spectra of most SNRs. The 0.5 - 2.0 keV and 2.0 - 8.0 keV bands are needed because number counts of active galactic nuclei (AGNs) and of X-ray binary populations are normally carried out in these bands and because the 0.5 - 2.0 keV band, encompassing the peak of the response curve, provides better statistics for some purposes than S+M. The AE count rates were used to establish which of the sources in the candidate list were statistically valid. The authors retained any source that had a probability-of-no-source < 5 x
Chandra Nearby Galaxies Point Source Catalog
공공데이터포털
The authors have analyzed Chandra ACIS observations of 32 nearby spiral and elliptical galaxies. The properties (e.g., counts in 3 energy bands, hardness ratios and inferred X-ray luminosities) of the 1441 X-ray point sources that were detected in these galaxies are listed in this table. The total point-source X-ray (0.3 - 8.0 keV) luminosity LXP is found to be well correlated with the B-band, K-band, and FIR+UV luminosities of spiral host galaxies, and is well correlated with the B-band and K-band luminosities of elliptical galaxies. This suggests an intimate connection between LXP and both the old and the young stellar populations, for which K and FIR+UV luminosities are reasonable proxies for the galaxy mass and the star formation rate (SFR). This table was created by the HEASARC in October 2006 based on CDS table J/ApJ/602/231/tablea1.dat This is a service provided by NASA HEASARC .
Chandra COSMOS Radio-Selected Star-Forming Galaxies and AGN Catalog
공공데이터포털
X-ray surveys contain sizable numbers of star-forming galaxies, beyond the AGN which usually make up the majority of detections. Many methods to separate the two populations are used in the literature, based on X-ray and multi-wavelength properties. The authors aim at a detailed test of the classification schemes and to study the X-ray properties of the resulting samples. They build on a sample of galaxies selected at 1.4 GHz in the VLA-COSMOS survey, classified by Smolcic et al. (2008, ApJS, 177, 14) according to their optical colors and also observed by Chandra. A similarly selected control sample of AGN is also used for comparison. The authors review some X-ray based classification criteria and check how they affect the sample composition. The efficiency of the classification scheme devised by Smolcic et al. (2008) is such that ~30% of composite/misclassified objects are expected because of the higher X-ray brightness of AGN with respect to galaxies. The latter fraction is actually 50% in the X-ray detected sources, while it is expected to be much lower among X-ray undetected sources. Indeed, the analysis of the stacked spectrum of undetected sources shows, consistently, strongly different properties between the AGN and galaxy samples. X-ray based selection criteria are then used to refine both samples. The radio/X-ray luminosity correlation for star-forming (SF) galaxies is found to hold with the same X-ray/radio ratio valid for nearby galaxies. Some evolution of the ratio may be possible for sources at high redshift or high luminosity, though it is likely explained by a bias arising from the radio selection. Finally, in their paper the authors discuss the X-ray number counts of star-forming galaxies from the VLA- and C-COSMOS surveys according to different selection criteria, and compare them to the similar determination from the Chandra Deep Fields. The classification scheme proposed here may find application in future works and surveys. This table contains the catalogs of radio-selected SF- and AGN-candidate sources with an X-ray detection in C-COSMOS which were contained in Tables 2 and 3 of the reference paper, respectively. The HEASARC has merged these into a single table, adding a new parameter sample which is set to 'SFG' for radio-selected SF-candidate sources from Table 2 and to 'AGN' for the AGN-candidate sources from Table 3. This table was created by the HEASARC in June 2012 based on CDS table J/A+A/542/A16 files table2.dat and table3.dat. This is a service provided by NASA HEASARC .
M 51 Chandra X-Ray Discrete Source Catalog
공공데이터포털
CHAMP (Chandra Multiwavelength Project) Hard X-Ray Emitting AGN
공공데이터포털
This table contains the results from an X-ray and optical analysis of 188 active galactic nuclei (AGN) identified from 497 hard X-ray (observed flux in the (2.0 - 8.0 keV) band > 2.7 x 10-15 erg/cm2/s) sources in 20 Chandra fields (1.5 square degrees) forming part of the Chandra Multiwavelength Project (ChaMP). These medium-depth X-ray observations enable the detection of a representative subset of those sources responsible for the bulk of the 2 - 8 keV cosmic X-ray background. Brighter than the survey's optical spectroscopic limit, the authors achieve a reasonable degree of completeness (77% of X-ray sources with counterparts r' < 22.5 have been classified): broad emission-line AGNs (62%), narrow emission-line galaxies (24%), absorption-line galaxies (7%), stars (5%), or clusters (2%). To construct a pure AGN sample, the authors required the rest-frame 2.0-8.0 keV luminosity (uncorrected for intrinsic absorption) to exceed 1042 erg s-1, thereby excluding any sources that may contain a significant stellar or hot ISM component. The most luminous known star-forming or elliptical galaxies attain at most LX = 1042 erg s-1. Since many of the traditional optical AGN signatures are not present in obscured sources, high X-ray luminosity becomes the authors' single discriminant for supermassive black hole accretion. They believe that almost all of the NELGs and ALGs harbor accreting SMBHs based on their X-ray luminosity. They find that 90% of the identified ChaMP sources have luminosities above this threshold. These selection criteria yield a sample of 188 AGNs from 20 Chandra fields with f(2-8 keV) > 2.7 x 10-15 erg cm-2 s-1, r' < 22.5, and LX > 1042 erg s-1. The authors removed five objects identified as clusters based on their extended X-ray emission. This table was created by the HEASARC in March 2007 based on the CDS table J/ApJ/618/123, file table4.dat. This is a service provided by NASA HEASARC .
Chandra Nearby Spiral Galaxies Point Source Catalog
공공데이터포털
Emission from discrete point sources dominates the X-ray luminosity in spiral galaxies. This table contains the results from a survey of 11 nearby, nearly face-on spiral galaxies observed with the Chandra X-ray Observatory in 22 observations for a total of 869 ks. The galaxies in this sample are at high Galactic latitude to minimize the absorbing column in the line of site, are nearby to minimize source confusion, and span the Hubble sequence for spirals (types 0-7), allowing insights into the X-ray source population of many diverse systems. More than 820 unique point sources are detected in at least one observation within the D25 ellipses of the galaxies. A minimum of 27% of the sources exhibit detectable long- or short-term variability, indicating a source population dominated by accreting XRBs. 17 ultraluminous X-ray sources are detected, with typical rates per galaxy of 1 or 2. In this table, source lists for the 11 galaxies are presented, along with source counts, fluxes, luminosities, X-ray colors, and variability properties. It should be noted that the X-ray source counts presented in this table are raw, background-subtracted counts, so the count rates in sources from the same galaxy that fall on different CCDs cannot be directly compared. The colors presented have been corrected for the differences between front-illuminated and back-illuminated CCDs. This table was created by the HEASARC in November 2006 based on the electronic version of Table 4 obtained from the electronic ApJ web site. This is a service provided by NASA HEASARC .
NGC 4649 Chandra X-Ray Point Source Catalog 2
공공데이터포털
This table contains the main X-ray source catalog for the Chandra monitoring observations of the 16.5-Mpc distant elliptical galaxy, NGC 4649. The galaxy has been observed with Chandra ACIS-S3 in six separate pointings, reaching a total exposure of 299 ks. There are 501 X-ray sources detected in the 0.3-8.0 keV band in the merged observation or in one of the six individual observations; 399 sources are located within the D25 ellipse. The observed 0.3-8.0 keV luminosities of these 501 sources range from 9.3 x 1036 erg s-1 to 5.4 x 1039 erg s-1. The 90% detection completeness limit within the D25 ellipse is 5.5 x 1037 erg s-1. Based on the surface density of background active galactic nuclei (AGNs) and the detection completeness, we expect ~ 45 background AGNs among the catalog sources (~ 15 within the D25 ellipse). There are nine sources with luminosities greater than 1039 erg s-1, which are candidates for ultraluminous X-ray sources. The nuclear source of NGC 4649 is a low-luminosity AGN, with an intrinsic 2.0-8.0 keV X-ray luminosity of 1.5 x 1038 erg s-1. The X-ray colors suggest that the majority of the catalog sources are low-mass X-ray binaries (LMXBs). The authors find that 164 of the 501 X-ray sources show long-term variability, indicating that they are accreting compact objects, and discover four transient candidates and another four potential transients. They also identify 173 X-ray sources (141 within the D25 ellipse) that are associated with globular clusters (GCs) based on Hubble Space Telescope and ground-based data; these LMXBs tend to be hosted by red GCs. Although NGC 4649 has a much larger population of X-ray sources than the structurally similar early-type galaxies, NGC 3379 and NGC 4278, the X-ray source properties are comparable in all three systems. This HEASARC table contains the main Chandra source catalog of the basic properties of the 501 X-ray detected sources (Table 3 in the reference paper which includes both sources detected in the merged X-ray image as well as a number only detected in the individual observations), and also the information on source counts, hardness ratios and soft and hard X-ray colors in the merged observation for the same 501 X-ray detected sources (Table 4 in the reference paper). It does not contain the information on source counts, hardness ratios and soft and hard X-ray colors for these same sources in the six individual observations that were contained in Tables 5 - 10 of the reference paper. This table was created by the HEASARC in March 2013 based on the electronic version of Tables 3 and 4 from the reference paper which were obtained from the ApJS website.. This is a service provided by NASA HEASARC .
X-Ray Observations of Compact Group Galaxies
공공데이터포털
This catalog presents the study of a sample of 15 compact groups (CGs) observed with Chandra/ACIS, Swift/UVOT and Spitzer/IRAC-MIPS for which archival data exist, allowing the authors to obtain SFRs, stellar masses, sSFRs and X-ray fluxes and luminosities for individual, off-nuclear point sources, which they summed to obtain total X-ray luminosities originating in off-nuclear point sources in a galaxy. Details on the Swift and Spitzer observations and data for systems in this sample can be found in Tzanavaris et al. (2010ApJ...716..556T) and Lenkic et al. (2016MNRAS.459.2948L). For Chandra/ACIS observations, see Tzanavaris et al. (2014ApJS..212....9T) and Desjardins et al. (2013ApJ...763..121D; 2014ApJ...790..132D). The authors obtained total galaxy X-ray luminosities, LX, originating from individually detected point sources in a sample of 47 galaxies in 15 compact groups of galaxies (CGs). For the great majority of the galaxies, they found that the detected point sources most likely are local to their associated galaxy, and are thus extragalactic X-ray binaries (XRBs) or nuclear active galactic nuclei (AGNs). For spiral and irregular galaxies, they found that, after accounting for AGNs and nuclear sources, most CG galaxies are either within the +/- 1 sigma scatter of the Mineo et al. LX-star formation rate (SFR) correlation or have higher LX than predicted by this correlation for their SFR. These "excesses" may be due to low metallicities and high interaction levels. For elliptical and S0 galaxies, after accounting for AGNs and nuclear sources, most CG galaxies were found to be consistent with the Boroson et al. LX-stellar mass correlation for low-mass XRBs, with larger scatter, likely due to residual effects such as AGN activity or hot gas. Assuming non-nuclear sources are low- or high-mass XRBs, the authors used appropriate XRB luminosity functions to estimate the probability that stochastic effects can lead to such extreme LX values. They found that, although stochastic effects do not in general appear to be important, for some galaxies there is a significant probability that high LX values can be observed due to strong XRB variability. This table was created by the HEASARC in May 2019 based upon the CDS Catalog J/ApJ/817/95 file table3.dat This is a service provided by NASA HEASARC .