데이터셋 상세
미국
EXOSAT/ME Galactic Plane Survey
This catalog is based on information contained in Warwick et al (1988), MNRAS, 232, 551. The distribution of 2-6 keV x-ray emission in the galactic plane in the first and fourth galactic quadrants has been measured in a series of scanning observations with the medium-energy progportional counters on EXOSAT. The results are presented as contour maps and in the form of a catalogue of 70 discrete sources. Additional references can be found under the reference parameter. Additional information can be obtained upon request from the HEASARC. This is a service provided by NASA HEASARC .
데이터 정보
연관 데이터
ASCA Galactic Plane Survey of Faint X-Ray Sources
공공데이터포털
MAXI/GSC 7-Year High and Low Galactic Latitude Source Catalog (3MAXI)
공공데이터포털
This table combines the published X-ray source catalogs of the high galactic latitude (|b| > 10o), Kawamuro et 2018, and the low galactic latitude (|b| < 10o), Hori et al. 2018, based on 7 years of MAXI Gas Slit Camera (GSC) data from 2009 August 13 to 2016 July 31. The low galactic latitude catalog contains 221 sources with a significance threshold > 6.5 sigma. The low galactic faintest source has a flux of 5.2 x 10-12 erg cm-2 s-1 (or an intensity of 0.43 mCrab) in the 4-10 keV band. The high galactic latitude catalog contains 686 sources detected at significances >= 6.5 sigma in the 4-10 keV band. The high galactic 4-10 keV sensitivity reaches ~0.48 mCrab, or ~5.9 x 10-12 erg cm-2 s-1, over half of the survey area. The same data-screening criteria were applied to obtain the low and high galactic catalogs. In their papers the authors describe the detection method, the statistical quantities derived for each source and their variability. To derive a counterpart, each source was cross-matched with the Swift/BAT 105-month catalog (BAT105; Oh et al. 2018), the Uhuru fourth catalog (4U; Forman et al. 1978), the RXTE All-Sky Monitor long-term observed source table (XTEASMLONG16), Meta-Catalog of X-Ray Detected Clusters of Galaxies (MCXC; Piffaretti et al. 2011), the XMM-Newton Slew Survey Catalog (XMMSL217), and the ROSAT All-Sky Survey Bright Source Catalog (1RXS; Voges et al. 1999). Seven of the sources in the low galactic latitudes were detected by binning the data differently (source numbers 215-221 in the catalog named 73-day sources), and, similarly, four of the sources in the high galactic latitude catalog named transient sources. The parameters in the combined table include the source name (3MAXI), the position and its error, the detection significances and fluxes in the 4-10 keV, 3-4 keV bands and 10-20 keV bands the hardness ratios (HR1: 3-4 keV, 4-10 keV and HR2: 4-10 keV, 10-20 keV), excess variance in the 4-10 keV lightcurve and information on the likely counterpart. The high galactic catalogs also reports the flux in the 3-10 keV, an additional hardness (HR3: 3-10 keV and 10-20 keV) and an additional parameter representing variability. The hardness ratios are defined as H-S/H+S were S and H are the soft- and hard-band fluxes, respectively. This table was created by the HEASARC in April 2021. It is a combination of the 7-year low- and high-latitude MAXI source catalogs published on ApJS. The data for the low-galactic latitude and the high-galactic latitude were downloaded from the ApJS electronic version of the Hori et al. 2018 ApJS 235,7 and Kawamuro et al. 2018 ApJS 238,33 papers respectively. The low-latitude data included in this table are from tables 4, 5, 6, 7 of the Hori paper that report the X-ray sources detected (214 sources, table 4), their possible identification (table 5), the transient sources discovered binning the data on 73 days period (7 sources, table 5) and their identification (table 6). The high-latitude data included in this table are from the tables 1,2,3 of the Kawamuro paper that report the X-ray sources detected (682 sources in table 1), their identifications (table 2), and the transient sources (4 sources in table 3). The low and high galactic latitude source catalogs provide for each individual source similar parameters for the X-ray properties with the high-latitude having three additional parameters, specifically, the flux in the 3-10 keV energy range, the 3-10/10-20-keV hardness ratio, and a time variability test. These parameters are kept in the HEASARC combined table and set to "blank" values for the low-latitude sources. The four sources in the high-latitude catalog named transient sources have only fluxes in the 4-10 keV band and no other fluxes in the other energy bands or the hardness ratio are reported. The HEASARC combined table includes a field to identify whether the source is from the
GLIMPSE I Archive
공공데이터포털
The Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSEI), using the Spitzer Space Telescope Infrared Array Camera (IRAC) surveyed approximately 220 square degrees of the Galactic plane, covering a latitude range of ±1◦, and a longitude range of |l| =10◦−65◦, plus the Observation Strategy Validation (OSV) region at l=284◦. The observations consisted of two 1.2 second integrations at each position, for a total of over 77,000 pointings and ∼310,000 IRAC frames in 400 hours total survey time. The survey consists of a point source Catalog, a point source Archive, and mosaicked images.The GLIMPSEI Archive (GLMIA or the “Archive”) consists of point sources with a signal- to-noise > 5 in at least one band and less stringent selection critera than the Catalog. The photometric uncertainty is typically < 0.3 mag. The GLIMPSEI Catalog is a subset of the Archive, but note that the entries for a particular source might not be the same due to additional nulling of magnitudes in the Catalog because of the more stringent requirements.
GLIMPSE I Catalog
공공데이터포털
The Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSEI), using the Spitzer Space Telescope Infrared Array Camera (IRAC) surveyed approximately 220 square degrees of the Galactic plane, covering a latitude range of ±1◦, and a longitude range of |l| =10◦−65◦, plus the Observation Strategy Validation (OSV) region at l=284◦. The observations consisted of two 1.2 second integrations at each position, for a total of over 77,000 pointings and ∼310,000 IRAC frames in 400 hours total survey time. The survey consists of a point source Catalog, a point source Archive, and mosaicked images.The GLIMPSEI Catalog (GLMIC, or the “Catalog”) consists of point sources whose selection criteria are determined by the requirement that the reliability be ≥99.5%. There is a range of limiting magnitudes depending on whether the source is in a sparsely populated or low background region or in a region of high diffuse background or high source density. The photometric uncertainty is typically < 0.2 mag.
XMM-Newton Galactic Plane Survey - XGPS
공공데이터포털
This table contains the first results from the XMM-Newton Galactic Plane Survey (XGPS). In the first phase of the program, 22 pointings were used to cover a region of approximately 3 square degrees between 19 and 22 degrees in Galactic Longitude and +/-0.6 degrees in Galactic Latitude. In total, over 400 point X-ray sources have been resolved at >=5-sigma significance, down to a flux limit of ~2 x 10-14 erg/s/cm2 (2-10 keV). The sources exhibit a very wide range of spectral hardness, with interstellar absorption identified as a major influence. The source populations detected in the soft (0.4 - 2 keV) band and hard (2 - 6 keV) band show surprisingly little overlap. The majority of the soft sources appear to be associated with relatively nearby stars with active stelaar coronae, judging from their high coincidence with bright stellar counterparts. The combination of the XGPS measurements in the hard X-ray band with the results from earlier surveys carried out by ASCA and Chandra reveals the form of the low-latitude X-ray source counts over 4 decades of flux. It appears that extragalactic sources dominate below ~10-13 erg/s/cm2 (2-10 keV), with a predominantly Galactic source population present above this flux threshold. The nature of the faint Galactic population observed by XMM-Newton remains uncertain, although cataclysmic variables and RS CVn systems may contribute substantially. This table was created by the HEASARC in February 2005 based on CDS Catalog J/MNRAS/351/31/tablea1.dat. This is a service provided by NASA HEASARC .
APOGLIMPSE Catalog
공공데이터포털
The APOGLIMPSE project re-images 53 square degrees of the inner Galactic plane that have also been targeted by the APOGEE/APOGEE-2 surveys - Sloan III and IV programs to obtain high resolution H band spectroscopy for hundreds of thousands of red giants. The data will be combined with the original GLIMPSE observations of the Galactic plane in 2004-2005 to measure the proper motions of the sources along the Galactic plane over the past decade.
XMM-Newton Survey Science Center Survey of the Galactic Plane
공공데이터포털
Many different classes of X-ray sources contribute to the Galactic landscape at high energies. Although the nature of the most luminous X-ray emitters is now fairly well understood, the population of low-to-medium X-ray luminosity (LX = 1027 - 1034 erg/s) sources remains much less studied, our knowledge being mostly based on the observation of local members. The advent of wide-field and high-sensitivity X-ray telescopes such as XMM-Newton now offers the opportunity to observe this low-to-medium LX population at large distances. This study reports the results of a Galactic plane survey conducted by the XMM-Newton Survey Science Centre (SSC). Beyond its astrophysical goals, this survey aims at gathering a representative sample of identified X-ray sources at low latitude that can be used later on to statistically identify the rest of the serendipitous sources discovered in the Milky Way. The survey is based on 26 XMM-Newton observations, obtained at |b| < 20 degrees, distributed over a large range in Galactic longitudes and covering a summed area of 4 deg2. The flux limit of this survey is 2 x 10-15 erg/cm2/s in the soft (0.5 - 2 keV) band and 1 x 10-14 erg/cm2/s in the hard (2 - 1 2keV) band. A total of 1319 individual X-ray sources have been detected. Using optical follow-up observations supplemented by cross-correlation with a large range of multi-wavelength archival catalogs, the authors identify 316 X-ray sources. This constitutes the largest group of spectroscopically identified low-latitude X-ray sources at this flux level. The majority of the identified X-ray sources are active coronae with spectral types in the range A to M at maximum distances of ~1 kpc. The number of identified active stars increases towards late spectral types, reaching a maximum at K. Using infrared colors, the authors classify 18% of the stars as giants. The observed distributions of FX/FV, X-ray and infrared colors indicates that their sample is dominated by a young (100 Myr) to intermediate (600 Myr) age population with a small contribution of close main-sequence or evolved binaries. The authors find other interesting objects such as cataclysmic variables (d ~ 0.6 - 2 kpc), low-luminosity high-mass stars (likely belonging to the class of Gamma-Cas-like systems, d ~ 1.5 - 7 kpc), T Tauri and Herbig-Ae stars. A handful of extragalactic sources located in the highest Galactic latitude fields could be optically identified. For the 20 fields observed with the EPIC pn camera, the authors have constructed log N(>S) - log S curves in the soft and hard bands. In the soft band, the majority of the sources are positively identified with active coronae and the fraction of stars increases by about one order of magnitude from b = 60 degrees to b = 0 degrees at an X-ray flux of 2 x 10-14 erg/cm2/s. The hard band is dominated by extragalactic sources, but there is a small contribution from a hard Galactic population formed by CVs, HMXB candidates or Gamma-Cas-like systems and by some active coronal stars that are also detected in the soft band. At b = 0 degrees, the surface density of hard sources brighter than 1 x 10-13 erg/cm2/s steeply increases by one order of magnitude from l = 20 degrees to the Galactic center region (l = 0.9 degrees). This HEASARC table contains 739 X-ray sources detected in the 26 different fields observed in this study and listed in Tables 8 - 33, inclusive, of the reference paper. These 739 sources have the best XMM quality, i.e. the summary flag sum_flag which contains information about flags set automatically and manually for a given source is zero, meaning that there are no negative flags for the source detection, have either a 2MASS, USNO, GSC, or SDSS counterpart, whatever the probability of identification is, or have some information via SIMBAD or the authors own
Spitzer Wide-Area IR Extra-Galactic Survey Chandra X-Ray Sources
공공데이터포털
This table contains results from deep combined observations with Spitzer and Chandra of the Spitzer Wide-Area Infrared Extragalactic Survey (SWIRE) in the ELAIS N1 region. This survey was used to investigate the nature of the faint X-ray and IR sources in common, to identify active galactic nucleus (AGN)/starburst diagnostics, and to study the sources of the X-ray and cosmic infrared backgrounds (XRB and CIRB). In the 17' x 17' area of the Chandra ACIS-I image there were approximately 3400 SWIRE near-IR sources with 4-sigma detections in at least two Infrared Array Camera (IRAC) bands and 988 sources detected at 24 micron (µm) with the Multiband Imaging Photometer (MIPS) brighter than a 24-um flux S_24 ~ 0.1 mJy. Of these, 102 IRAC and 59 MIPS sources have Chandra counterparts, out of a total of 122 X-ray sources present in the area with 0.5 - 8 keV flux > 10-15 erg cm-2 s-1. The SWIRE ELAIS N1 field was imaged by the IRAC multiband camera on Spitzer in 2004 January and with MIPS in early 2004 February. The observations were centered at the position (16h 00m, +59d 01'). The X-ray observations were taken as part of the ELAIS Deep X-ray Survey (EDXS) and are described in detail in Manners et al. (2003, MNRAS, 343, 293). For this analysis, the Chandra Advanced CCD Imaging Spectrometer (ACIS) observation of 75 ks centered on (16h 10m 20.11s, +54d 33' 22.3") (J2000.0) in the ELAIS N1 region. The aim point was focused on the ACIS-I chips, which consist of four CCDs arranged in a 2 x 2 array covering an area of 16.9' x 16.9' (286 square arcmin). Bad pixels and columns were removed, and data were filtered to eliminate high background times (due to strong solar flares), leaving 71.5 ks of good data after filtering. Counts-to-photon calibration assumed a standard power-law model spectrum with photon index Gamma = 1.7. Sources were detected to flux levels of 2.3 x 10-15 erg s-1 cm-2 in the 0.5 - 8 keV band, 9.4 x 10-16 erg s-1 cm-2 in the 0.5 - 2 keV band, and 5.2 x 10-15 erg s-1 cm-2 in the 2 - 8 keV band. Sources are detectable to these flux limits over 90% of the nominal survey area. For this analysis, the authors used sources detected in the full band of ACIS-I only, of which there are 122 in the N1 region. Of the 102 sources in common between Chandra and SWIRE, 83 have significant detections in the separate soft X-ray band (0.5 - 2 keV) and 64 are detected in the hard (2 - 8 keV) band. A simple near-neighbor search was performed to cross-correlate the Spitzer and Chandra source catalogs within the Chandra ACIS-I chip image, using a d = 5" search radius (roughly the quadratic sum of the astrometric errors). All together, the authors found reliably associated counterparts for 102 of the 122 Chandra sources (84% in total). The vast majority of these were detected with the IRAC channels 1 and 2 (3.6 and 4.5 um): 100 of the 122 Chandra sources in each case. As many as 59 Chandra objects are reliably associated with MIPS 24 um sources (all of them having IRAC counterparts), and just 1 had a MIPS 70 um counterpart. Of the 102 Spitzer-identified Chandra sources, three turned out to correspond to Galactic stars on the basis of their position on color-magnitude plots and optical morphology and were excluded from the subsequent analysis (and this table). This table was created by the HEASARC in March 2007 based on CDS catalog J/AJ/129/2074 file table2.dat, This is a service provided by NASA HEASARC .