데이터셋 상세
미국
Galactic Center Chandra X-Ray Source Near-IR Counterparts
This table contains a catalog of 5184 candidate infrared counterparts to X-ray sources detected toward the Galactic center. The X-ray sample contains 9017 point sources detected in this region by the Chandra X-ray Observatory during the past decade, including data from a recent deep survey of the central 2 degrees x 0.8 degrees of the Galactic plane. A total of 6760 of these sources have hard X-ray colors, and the majority of them lie near the Galactic center, while most of the remaining 2257 soft X-ray sources lie in the foreground. The authors have cross-correlated the X-ray source positions with the 2MASS and SIRIUS near-infrared catalogs, which collectively contain stars with a 10-sigma limiting flux of K<sub>s</sub> <= 15.6 mag. In order to distinguish absorbed infrared sources near the Galactic center from those in the foreground, they defined red and blue sources as those which have H - K<sub>s</sub> >= 0.9 and < 0.9 mag, respectively. The authors find that 5.8% =/- 1.5% (2 sigma) of the hard X-ray sources have real infrared counterparts, of which 228 +/- 99 are red and 166 +/- 27 are blue. The red counterparts are probably comprised of Wolf-Rayet and O stars, high-mass X-ray binaries, and symbiotic binaries located near the Galactic center. Foreground X-ray binaries suffering intrinsic X-ray absorption could be included in the sample of blue infrared counterparts to hard X-ray sources. The authors also find that 39.4% +/- 1.0% of the soft X-ray sources have blue infrared counterparts; most of these are probably coronally active dwarfs in the foreground. There is a noteworthy collection of ~20 red counterparts to hard X-ray sources near the Sagittarius B H II region, which are probably massive binaries that have formed within the last several Myr. For each of the infrared matches to X-ray sources in their catalog, the authors derived the probability that the association is real, based on the source properties and the results of the cross-correlation analysis. These data are included in this catalog and will serve spectroscopic surveys to identify infrared counterparts to X-ray sources near the Galactic center. This table was created by the HEASARC in October 2009 based on the electronic version of Table 3 from the reference paper which was obtained from the Astrophysical Journal web site. This is a service provided by NASA HEASARC .
데이터 정보
연관 데이터
Galactic Center Chandra X-Ray Point Source Catalog
공공데이터포털
This table contains a catalog of 9017 X-ray sources identified in Chandra observations of a 2 degrees by 0.8 degrees field around the Galactic center. This enlarges the number of known X-ray sources in the region by a factor of 2.5. The catalog incorporates all of the ACIS-I observations as of 2007 August, which total 2.25 Ms of exposure. At the distance to the Galactic center (8 kpc), we are sensitive to sources with luminosities of 4 x 1032 erg s-1 (0.5-8.0 keV; 90% confidence) over an area of 1 degree2, and up to an order of magnitude more sensitive in the deepest exposure (1.0 Ms) around Sgr A*. The positions of 60% of the sources are accurate to <1 arcsecond (95% confidence), and 20% have positions accurate to <0.5 arcsec. The authors search for variable sources, and find that 3% exhibit flux variations within an observation, and 10% exhibit variations from observation-to-observation. They also find one source, CXOUGC J174622.7-285218, with a periodic 1745 s signal (1.4% chance probability), which is probably a magnetically accreting cataclysmic variable. The authors compare the spatial distribution of X-ray sources to a model for the stellar distribution, and find 2.8 sigma evidence for excesses in the numbers of X-ray sources in the region of recent star formation encompassed by the Arches, Quintuplet, and Galactic center star clusters. These excess sources are also seen in the luminosity distribution of the X-ray sources, which is flatter near the Arches and Quintuplet than elsewhere in the field. These excess point sources, along with a similar longitudinal asymmetry in the distribution of diffuse iron emission that has been reported by other authors, probably have their origin in the young stars that are prominent at a galactic lonitude ~ 0.1 degrees. This tables was designed to be inclusive, so sources of questionable quality are included, according to the authors. For instance, 134 sources have net numbers of counts in the 0.5-8.0 keV band that are consistent with 0 at the 90% confidence level. These sources are only detected in a single band and are presumably either very hard or very soft, detected in single observations because they were transients, or detected in stacked observations with wvdecomp at marginal significance. The authors have chosen to include them because they passed the test based on Poisson statistics from Weisskopf et al. (2007, ApJ, 657, 1026). The observations which were used to generate the source list herein tabulated are listed in Table 1 of the reference paper. This HEASARC table GALCENCXO supercedes and replaces the previous HEASARC tables CHANGALCEN and CHANC150PC, which were based on Muno et al. (2003, ApJ, 589, 225) and Muno et al. (2006, ApJS, 165, 173), respectively. This table was created by the HEASARC in March 2009 based on the machine-readable versions of Table 2, 3 and 4 from the paper which were obtained from the electronic ApJ website. The information on short-term variability given in Table 5 of the reference paper was not included in this HEASARC table, notice. This is a service provided by NASA HEASARC .
M 51 Chandra X-Ray Discrete Source Catalog
공공데이터포털
RCW 49 Chandra X-Ray Point Source Catalog
공공데이터포털
This table contains the list of X-ray sources detected in a high-resolution X-ray imaging study of the stellar population in the Galactic massive star-forming region RCW 49 and its central OB association Westerlund 2. The authors obtained a ~ 40 ks X-ray image of a ~ 17' x 17' field using the Chandra X-Ray Observatory and deep NIR images using the Infrared Survey Facility in a concentric ~ 8.3' x 8.3' region. They detected 468 X-ray sources with a photometric significance >=1.0 and a 1% or less chance of being a background fluctuation, and identified optical, near-infrared (NIR), and Spitzer mid-infrared (MIR) counterparts for 379 of them. The unprecedented spatial resolution and sensitivity of the X-ray image, enhanced by optical and infrared imaging data, yielded the following results: (1) The central OB association Westerlund 2 is resolved for the first time in the X-ray band. X-ray emission is detected from all spectroscopically identified early-type stars in this region. (2) Most (~ 86%) X-ray sources with optical or infrared identifications are cluster members in comparison with a control field in the Galactic plane. (3) A loose constraint (2-5 kpc) for the distance to RCW 49 is derived from the mean X-ray luminosity of T Tauri stars. (4) The cluster X-ray population consists of low-mass pre-main-sequence and early-type stars as obtained from X-ray and NIR photometry. About 30 new OB star candidates are identified. (5) The authors estimate a cluster radius of 6' - 7' based on the X-ray surface number density profiles. (6) A large fraction (~ 90%) of cluster members are identified individually using complimentary X-ray and MIR excess emission. (7) The brightest five X-ray sources, two Wolf-Rayet stars and three O stars, have hard thermal spectra. The X-ray observation of RCW 49 was carried out using the Advanced CCD Imaging Spectrometer (ACIS) on board the Chandra X-Ray Observatory from 2003 August 23 UT 18:20 to August 24 UT 4:54. Four imaging array (ACIS-I) chips covered a 17 by 17 arcminutes field centered at (R.A., Dec.) = (10h24m00.5s, -57d 45' 18") in the equinox J2000.0 for a 36.7 ks exposure. ACIS-I covers the 0.5 - 8.0 keV energy band with a spectral resolution of ~ 150 eV at 6 keV and a point-spread function (PSF) radius of ~ 0.5" within ~ 2' of the on-axis position, degrading to ~ 6" at a 10' off-axis angle. The data were taken with the very faint telemetry mode and the timed exposure CCD operation with a frame time of 3.2 s. Sources with photometric significance of larger than 2 were fitted with an absorbed thin thermal plasma model. The abundance was fixed to be 0.3 times the solar value. Fits lacking uncertainties, fits with large uncertainties, and fits with frozen parameters should be viewed merely as splines to the data to obtain rough estimates of the X-ray luminosities: the listed parameter values are considered unreliable in such cases. The authors also conducted NIR observations on 2004 December 25 and 28 using the Simultaneous three-color Infrared Imager for Unbiased Surveys (SIRIUS) mounted on the Cassegrain focus of the IRSF 1.4 m telescope at the South African Astronomical Observatory. SIRIUS is a NIR imager capable of obtaining simultaneous images in the J, H, and Ks bands. The instrument is equipped with three HAWAII arrays of 1024 by 1024 pixels. The pixel scale of 0.45" is an excellent match with the on-axis spatial resolution of Chandra. The authors covered 8.3 by 8.3 arcminute fields at two positions, one aimed at RCW 49 (10h24m01.9s, -57d 45' 31") and the other at a control region. This table was created by the HEASARC in October 2007 based on the versions of Tables 1, 2, and 3 from the paper which were obtained from the electronic ApJ website. This is a service provided by NASA HEASARC .
NGC 4649 Chandra X-Ray Point Source Catalog 2
공공데이터포털
This table contains the main X-ray source catalog for the Chandra monitoring observations of the 16.5-Mpc distant elliptical galaxy, NGC 4649. The galaxy has been observed with Chandra ACIS-S3 in six separate pointings, reaching a total exposure of 299 ks. There are 501 X-ray sources detected in the 0.3-8.0 keV band in the merged observation or in one of the six individual observations; 399 sources are located within the D25 ellipse. The observed 0.3-8.0 keV luminosities of these 501 sources range from 9.3 x 1036 erg s-1 to 5.4 x 1039 erg s-1. The 90% detection completeness limit within the D25 ellipse is 5.5 x 1037 erg s-1. Based on the surface density of background active galactic nuclei (AGNs) and the detection completeness, we expect ~ 45 background AGNs among the catalog sources (~ 15 within the D25 ellipse). There are nine sources with luminosities greater than 1039 erg s-1, which are candidates for ultraluminous X-ray sources. The nuclear source of NGC 4649 is a low-luminosity AGN, with an intrinsic 2.0-8.0 keV X-ray luminosity of 1.5 x 1038 erg s-1. The X-ray colors suggest that the majority of the catalog sources are low-mass X-ray binaries (LMXBs). The authors find that 164 of the 501 X-ray sources show long-term variability, indicating that they are accreting compact objects, and discover four transient candidates and another four potential transients. They also identify 173 X-ray sources (141 within the D25 ellipse) that are associated with globular clusters (GCs) based on Hubble Space Telescope and ground-based data; these LMXBs tend to be hosted by red GCs. Although NGC 4649 has a much larger population of X-ray sources than the structurally similar early-type galaxies, NGC 3379 and NGC 4278, the X-ray source properties are comparable in all three systems. This HEASARC table contains the main Chandra source catalog of the basic properties of the 501 X-ray detected sources (Table 3 in the reference paper which includes both sources detected in the merged X-ray image as well as a number only detected in the individual observations), and also the information on source counts, hardness ratios and soft and hard X-ray colors in the merged observation for the same 501 X-ray detected sources (Table 4 in the reference paper). It does not contain the information on source counts, hardness ratios and soft and hard X-ray colors for these same sources in the six individual observations that were contained in Tables 5 - 10 of the reference paper. This table was created by the HEASARC in March 2013 based on the electronic version of Tables 3 and 4 from the reference paper which were obtained from the ApJS website.. This is a service provided by NASA HEASARC .
M 83 Chandra X-Ray Point Source Catalog
공공데이터포털
The authors of this table have obtained a series of deep X-ray images of the nearby (4.61 Mpc) galaxy M 83 using Chandra, with a total exposure of 729 ks. Combining the new data with earlier archival observations totaling 61 ks, they find 378 point sources within the D25 contour of the galaxy. The authors find 80 more sources, mostly background active galactic nuclei (AGNs), outside of the D25 contour. Of the X-ray sources, 47 have been detected in a new radio survey of M 83 obtained using the Australia Telescope Compact Array (ATCA). Of the X-ray sources, at least 87 seem likely to be supernova remnants (SNRs), based on a combination of their properties in X-rays and at other wavelengths. The authors attempt to classify the point source population of M 83 through a combination of spectral and temporal analysis. As part of this effort, in the reference paper they carry out an initial spectral analysis of the 29 brightest X-ray sources. The soft X-ray sources in the disk, many of which are SNRs, are associated with the spiral arms, while the harder X-ray sources, mostly X-ray binaries (XRBs), do not appear to be. After eliminating AGNs, foreground stars, and identified SNRs from the sample, the authors construct the cumulative luminosity function (CLF) of XRBs brighter than 8 x 1035 erg s-1. Despite M 83's relatively high star formation rate, the CLF indicates that most of the XRBs in the disk are low mass X-ray binaries (XRBs). The X-ray observations of M 83 in this survey were all carried out with the ACIS-S in order to maximize the sensitivity to soft X-ray sources, such as SNRs, and to diffuse emission. The nucleus of M 83 was centered in the field of the back-illuminated S3 chip to provide reasonably uniform coverage of M 83. In addition to the S3 chip, data were also obtained from chips S1, S2, S4, I2, and I3. All of the observations were made in the "very faint" mode to optimize background subtraction. Observations were spaced over a period of one year from 2010 December to 2011 December, as indicated in Table 1 of the reference paper. The only difference among observations was the roll orientation of the spacecraft and the differing exposure times. All of the observations were nominal, and yielded a total of 729 ks of useful data. In order to maximize their sensitivity and more importantly to improve their ability to identify time variable sources, the authors included in their analysis earlier Chandra observations of M 83 in 2000 and 2001 totaling 61 ks which were obtained by G. Rieke (Prop ID. 1600489) and by A. Prestwich (Prop ID. 267005758). These data were obtained in a very similar manner to that of the present survey, and increased the total exposure to 790 ks. The authors used ACIS EXTRACT (AE) to derive net count rates from the sources in various energy bands: 0.35 - 8.0 keV (total or T), 0.35 - 1.1 keV (soft or S), 1.1 - 2.6 keV (medium or M), 2.6 - 8.0 keV (hard or H), 0.5 - 2.0 keV ("normal" soft band) and 2.0 - 8.0 keV ("normal" hard band). Their choice of these bands was based on a variety of overlapping goals. The broad 0.35 - 8.0 keV band samples the full energy range accessible to Chandra observations. The three bands S, M and H provide energy ranges intended to classify sources on the basis of their hardness ratios. The boundary at 1.1 keV, in particular, is just above the region containing strong features due to Ne and Fe seen in the spectra of most SNRs. The 0.5 - 2.0 keV and 2.0 - 8.0 keV bands are needed because number counts of active galactic nuclei (AGNs) and of X-ray binary populations are normally carried out in these bands and because the 0.5 - 2.0 keV band, encompassing the peak of the response curve, provides better statistics for some purposes than S+M. The AE count rates were used to establish which of the sources in the candidate list were statistically valid. The authors retained any source that had a probability-of-no-source < 5 x
M 51 Deep Chandra ACIS X-Ray Point Source Catalog
공공데이터포털
The authors obtained a deep X-ray image of the nearby galaxy M 51 using the Chandra X-Ray Observatory. Here the catalog of X-ray sources detected in these observations is presented, while an overview of the properties of the point-source population is provided in the reference paper. The authors find 298 sources within the D25 radii (the apparent major isophotal galactic radii measured at or reduced to the surface brightness level muB = 25.0 B-mag per square arcsecond) of NGC 5194 and NGC 5195, of which 20% are variable, a dozen are classical transients, and another half dozen are transient-like sources. The typical number of active ultraluminous X-ray sources in any given observation is ~5, and only two of those sources persist in an ultraluminous state over the 12 years of observations. Given reasonable assumptions about the supernova remnant population, the luminosity function is well described by a power law with an index between 1.55 and 1.7, only slightly shallower than that found for populations dominated by high-mass X-ray binaries (HMXBs), which suggests that the binary population in NGC 5194 is also dominated by HMXBs. The luminosity function of NGC 5195 is more consistent with a low-mass X-ray binary dominated population. This deep study of M51 is composed of 107 ks of archival Chandra observations, to which the authors added another 745 ks of observations. The Chandra ObsIDs and parameters of all of the observations used in this study (which span from June 2000 to October 2012) are given in Table 2 of the reference paper. All of the observations were made with the ACIS-S array. The authors used the ACIS Extract software package (AE) to perform the photometry. For each source, AE extracted a source region whose size and shape were based on the local PSF, and a background region whose size and shape were based on the size of the local PSF and the location of nearby sources. Source properties were then calculated in a standard manner. Of particular importance in this analysis is the prob_no_source parameter, which is the probability that one could measure the observed count rate in the absence of a source. The authors took a source to be significant only if this parameter was < 5 x 10-6. At this probability threshold, one would expect a single spurious source per field, or roughly 1.5 spurious sources within the D25 regions. As they used the same value in their analysis of M83 (Long et al. 2014, ApJS, 212, 21, the source catalog from which is available in the HEASARC database as the M83CXO table), the two catalogs are directly comparable. This table was created by the HEASARC in January 2017 based on CDS Catalog J/ApJ/827/46 files table4.dat, table5.dat and table6.dat. This is a service provided by NASA HEASARC .
Spitzer Wide-Area IR Extra-Galactic Survey Chandra X-Ray Sources
공공데이터포털
This table contains results from deep combined observations with Spitzer and Chandra of the Spitzer Wide-Area Infrared Extragalactic Survey (SWIRE) in the ELAIS N1 region. This survey was used to investigate the nature of the faint X-ray and IR sources in common, to identify active galactic nucleus (AGN)/starburst diagnostics, and to study the sources of the X-ray and cosmic infrared backgrounds (XRB and CIRB). In the 17' x 17' area of the Chandra ACIS-I image there were approximately 3400 SWIRE near-IR sources with 4-sigma detections in at least two Infrared Array Camera (IRAC) bands and 988 sources detected at 24 micron (µm) with the Multiband Imaging Photometer (MIPS) brighter than a 24-um flux S_24 ~ 0.1 mJy. Of these, 102 IRAC and 59 MIPS sources have Chandra counterparts, out of a total of 122 X-ray sources present in the area with 0.5 - 8 keV flux > 10-15 erg cm-2 s-1. The SWIRE ELAIS N1 field was imaged by the IRAC multiband camera on Spitzer in 2004 January and with MIPS in early 2004 February. The observations were centered at the position (16h 00m, +59d 01'). The X-ray observations were taken as part of the ELAIS Deep X-ray Survey (EDXS) and are described in detail in Manners et al. (2003, MNRAS, 343, 293). For this analysis, the Chandra Advanced CCD Imaging Spectrometer (ACIS) observation of 75 ks centered on (16h 10m 20.11s, +54d 33' 22.3") (J2000.0) in the ELAIS N1 region. The aim point was focused on the ACIS-I chips, which consist of four CCDs arranged in a 2 x 2 array covering an area of 16.9' x 16.9' (286 square arcmin). Bad pixels and columns were removed, and data were filtered to eliminate high background times (due to strong solar flares), leaving 71.5 ks of good data after filtering. Counts-to-photon calibration assumed a standard power-law model spectrum with photon index Gamma = 1.7. Sources were detected to flux levels of 2.3 x 10-15 erg s-1 cm-2 in the 0.5 - 8 keV band, 9.4 x 10-16 erg s-1 cm-2 in the 0.5 - 2 keV band, and 5.2 x 10-15 erg s-1 cm-2 in the 2 - 8 keV band. Sources are detectable to these flux limits over 90% of the nominal survey area. For this analysis, the authors used sources detected in the full band of ACIS-I only, of which there are 122 in the N1 region. Of the 102 sources in common between Chandra and SWIRE, 83 have significant detections in the separate soft X-ray band (0.5 - 2 keV) and 64 are detected in the hard (2 - 8 keV) band. A simple near-neighbor search was performed to cross-correlate the Spitzer and Chandra source catalogs within the Chandra ACIS-I chip image, using a d = 5" search radius (roughly the quadratic sum of the astrometric errors). All together, the authors found reliably associated counterparts for 102 of the 122 Chandra sources (84% in total). The vast majority of these were detected with the IRAC channels 1 and 2 (3.6 and 4.5 um): 100 of the 122 Chandra sources in each case. As many as 59 Chandra objects are reliably associated with MIPS 24 um sources (all of them having IRAC counterparts), and just 1 had a MIPS 70 um counterpart. Of the 102 Spitzer-identified Chandra sources, three turned out to correspond to Galactic stars on the basis of their position on color-magnitude plots and optical morphology and were excluded from the subsequent analysis (and this table). This table was created by the HEASARC in March 2007 based on CDS catalog J/AJ/129/2074 file table2.dat, This is a service provided by NASA HEASARC .
M 81 Chandra X-Ray Discrete Source Catalog
공공데이터포털
A Chandra X-Ray Observatory ACIS-S imaging observation is used to study the population of X-ray sources in the nearby (3.6 Mpc) Sab galaxy M 81 (NGC 3031). A total of 177 sources are detected, with 124 located within the D_25 isophote to a limiting X-ray luminosity of ~ 3 x 1036 erg/s. Source positions, count rates, luminosities in the 0.3 - 8.0 keV band, limiting optical magnitudes, and potential counterpart identifications are tabulated. Spectral and timing analysis of the 36 brightest sources are reported, including the low-luminosity active galactic nucleus, SN 1993J, and the Einstein-discovered ultraluminous X-ray source X6. The primary X-ray data set is a 49926 s observation of M81 obtained on 2000 May 7 with the Chandra Advanced CCD Imaging Spectrometer (ACIS) spectroscopy array operating in imaging mode. The X-ray data were reprocessed by the Chandra X-ray Center (CXC) on 2001 January 4. These reprocessed data were used in this work. There are no significant differences between the reprocessed data and the originally distributed data analyzed by Tennant et al. (2001ApJ...549L..43T). The observation was taken in faint timed exposure mode at 3.241 s/frame at a focal plane temperature of -120 C. Standard CXC processing has applied aspect corrections and compensated for spacecraft dither. The primary target, SN 1993J, was located near the nominal aimpoint on the back-illuminated (BI) device S3. The nucleus of M81 lies 2.79' from SN 1993J toward the center of S3 in this observation. Accurate positions of these two objects and two G0 stars located on device S2 were used to identify any offset and to determine absolute locations of the remaining Chandra sources as well as objects in other X-ray images and those obtained at other wavelengths. No offset correction was applied to the Chandra X-ray positions. This table was created by the HEASARC in March 2007 based on the CDS table J/ApJS/144/213, files table2.dat and table3.dat. This is a service provided by NASA HEASARC .
NGC 2808 Chandra X-Ray Point Source Catalog
공공데이터포털
This table contains the sources detected in a Chandra X-ray observation of the Galactic globular cluster NGC 2808, as well as the corresponding XMM-Newton data for those sources which have XMM-Newton X-ray counterparts. Using new Chandra X-ray observations and existing XMM-Newton X-ray and Hubble Space Telescope far-ultraviolet observations, the authors aim to detect and identify the faint X-ray sources belonging to NGC 2808 in order to understand their role in the evolution of globular clusters. The authors classify the X-ray sources associated with the cluster by analysing their colors and variability. Previous observations with XMM-Newton and far-ultraviolet observations with Hubble are re-investigated to help identify the Chandra sources associated with the cluster. The authors compare their results to population synthesis models and observations of other Galactic globular clusters. NGC 2808 was observed with the Chandra X-ray Observatory Advanced CCD Imaging Spectrometer-Imager (ACIS-I) on 2007 June 19-21 (28 months after the XMM-Newton observation referred to the reference paper) for two distinct exposures of 46 and 11 kiloseconds. The authors detect 113 sources, of which 16 fall inside the half-mass radius of NGC 2808 and are concentrated towards the cluster core. This table was created by the HEASARC in February 2009 based on the electronic version of Table 1 from the paper which was obtained from the CDS (their catalog J/A+A/490/641 file table1.dat). This is a service provided by NASA HEASARC .
Chandra ACIS Survey of Nearby Galaxies X-Ray Point Source Catalog
공공데이터포털
The Chandra data archive is a treasure trove for various studies, and in this study the author exploits this valuable resource to study the X-ray point source populations in nearby galaxies. By 2007 December 14, 383 galaxies within 40 Mpc with isophotal major axes above 1 arcminute had been observed by 626 public ACIS observations, most of which were for the first time analyzed by this survey to study the X-ray point sources. Uniform data analysis procedures were applied to the 626 ACIS observations and led to the detection of 28,099 point sources, which belong to 17,559 independent sources. These include 8700 sources observed twice or more and 1000 sources observed 10 times or more, providing a wealth of data to study the long-term variability of these X-ray sources. Cross-correlation of these sources with galaxy isophotes led to 8,519 sources within the D25 isophotes of 351 galaxies, 3,305 sources between the D25 and 2 * D25 isophotes of 309 galaxies, and an additional 5,735 sources outside the 2 * D25 isophotes of galaxies. This survey has produced a uniform catalog, by far the largest, of 11,824 X-ray point sources within 2 * D25 isophotes of 380 galaxies. Contamination analysis using the log N-log S relation shows that 74% of the sources within the 2 * D25 isophotes above 1039 erg s-1, 71% of the sources above 1038 erg s-1, 63% of the sources above 1037 erg s-1, and 56% of all sources are truly associated with the galaxies. Meticulous efforts have identified 234 X-ray sources with galactic nuclei of nearby galaxies. This archival survey leads to 300 ultraluminous X-ray sources (ULXs) with LX in the 0.3-8 keV band >= 2 x 1039 erg s-1 within the D25 isophotes, 179 ULXs between the D25 and the 2 * D25 isophotes, and a total of 479 ULXs within 188 host galaxies, with about 324 ULXs truly associated with the host galaxies based on the contamination analysis. About 4% of the sources exhibited at least one supersoft phase, and 70 sources are classified as ultraluminous supersoft sources with LX (0.3-8 keV) >= 2 x 1038 erg s-1. With a uniform data set and good statistics, this survey enables future works on various topics, such as X-ray luminosity functions for the ordinary X-ray binary populations in different types of galaxies, and X-ray properties of galactic nuclei. This table contains the list of 17,559 'independent' X-ray point sources that was contained in table 4 of the reference paper. As the author notes in Section 5 of this paper, there are 341 sources projected within 2 galaxies with overlapping domains which are listed for both galaxies. The 5,735 sources lieing outside the 2* D25 isophotes of the galaxies are also included in this table. For these sources, the X-ray luminosities are computed as if they were in a galaxy of that group, which may or may not be the case; thus, they may not be their 'true' luminosities, but are listed for the purposes of comparison. This table was created by the HEASARC in March 2011 based on the electronic version of Table 4 of the reference paper which was obtained from the Astrophysical Journal web site. Some of the values for the name parameter in the HEASARC's implementation of this table were corrected in April 2018. This is a service provided by NASA HEASARC .