데이터셋 상세
미국
NGC 4472 Chandra X-Ray Point Source Catalog
The Chandra X-Ray Point Source Catalog of the giant elliptical galaxy NGC 4472 contains the results of a Chandra ACIS-S/Hubble Space Telescope (HST) study of the point sources of this Virgo Cluster galaxy. The authors ran WAVDETECT from the CIAO 2.2 software package using wavelet scales from 1 to 16 pixels spaced by factors of 2, setting a false-source probability detection threshold of 10<sup>-6</sup>, which should yield an expectation value of slightly less than one false source over the entire ACIS-S chip. They identify 144 X-ray point sources outside the nuclear region, 72 of which are located within the HST fields. An additional 3 sources are within 8" of the center of the galaxy and appear to be associated either with a weak active galactic nucleus or with brightness enhancements in the hot interstellar gas. One additional source (not included in this table) appears to be a spurious detection, as WAVDETECT assigns it a count rate of 1.5 counts, and visual inspection fails to find evidence of a source at that location. The optical data show 1102 sources whose half-light radii are small enough to be globular cluster candidates, 829 of which also have colors consistent with being globular clusters (with only four in the restricted central 10" region). 30 X-ray sources within 0.7" of an optical source with optical colors consistent with being globular clusters were found. Two additional sources show optical colors outside the globular cluster color range and are likely to be either foreground or background objects. The thirty globular cluster matches are likely to be low-mass X-ray binaries (LMXBs) associated with the globular clusters, while ~ 42 of the X-ray sources have no optical counterparts to V <~ 25 and I <~ 24, indicating that they are likely to be predominantly LMXBs in the field star population with a small amount of possible contamination from background active galactic nuclei. Thus approximately 40% of the X-ray sources are in globular clusters and ~ 4% of the globular clusters contain X-ray sources. This HEASARC table contains the X-ray data for the above-mentioned 147 detected X-ray sources, and the correlative optical data for the 30 optical counterparts which have colors consistent with being globular clusters. It does not contain the data from the full list of optical sources which were given in Table 2 of the reference paper. This table was created by the HEASARC in May 2007 based on CDS table J/ApJ/586/814 files table1.dat and table3.dat. This is a service provided by NASA HEASARC .
데이터 정보
연관 데이터
NGC 4649 Chandra X-Ray Point Source Catalog 2
공공데이터포털
This table contains the main X-ray source catalog for the Chandra monitoring observations of the 16.5-Mpc distant elliptical galaxy, NGC 4649. The galaxy has been observed with Chandra ACIS-S3 in six separate pointings, reaching a total exposure of 299 ks. There are 501 X-ray sources detected in the 0.3-8.0 keV band in the merged observation or in one of the six individual observations; 399 sources are located within the D25 ellipse. The observed 0.3-8.0 keV luminosities of these 501 sources range from 9.3 x 1036 erg s-1 to 5.4 x 1039 erg s-1. The 90% detection completeness limit within the D25 ellipse is 5.5 x 1037 erg s-1. Based on the surface density of background active galactic nuclei (AGNs) and the detection completeness, we expect ~ 45 background AGNs among the catalog sources (~ 15 within the D25 ellipse). There are nine sources with luminosities greater than 1039 erg s-1, which are candidates for ultraluminous X-ray sources. The nuclear source of NGC 4649 is a low-luminosity AGN, with an intrinsic 2.0-8.0 keV X-ray luminosity of 1.5 x 1038 erg s-1. The X-ray colors suggest that the majority of the catalog sources are low-mass X-ray binaries (LMXBs). The authors find that 164 of the 501 X-ray sources show long-term variability, indicating that they are accreting compact objects, and discover four transient candidates and another four potential transients. They also identify 173 X-ray sources (141 within the D25 ellipse) that are associated with globular clusters (GCs) based on Hubble Space Telescope and ground-based data; these LMXBs tend to be hosted by red GCs. Although NGC 4649 has a much larger population of X-ray sources than the structurally similar early-type galaxies, NGC 3379 and NGC 4278, the X-ray source properties are comparable in all three systems. This HEASARC table contains the main Chandra source catalog of the basic properties of the 501 X-ray detected sources (Table 3 in the reference paper which includes both sources detected in the merged X-ray image as well as a number only detected in the individual observations), and also the information on source counts, hardness ratios and soft and hard X-ray colors in the merged observation for the same 501 X-ray detected sources (Table 4 in the reference paper). It does not contain the information on source counts, hardness ratios and soft and hard X-ray colors for these same sources in the six individual observations that were contained in Tables 5 - 10 of the reference paper. This table was created by the HEASARC in March 2013 based on the electronic version of Tables 3 and 4 from the reference paper which were obtained from the ApJS website.. This is a service provided by NASA HEASARC .
NGC 4636 Chandra X-Ray Point Source Catalog
공공데이터포털
This catalog lists the X-ray point-source population in the nearby Virgo elliptical galaxy NGC 4636 from three Chandra X-ray observations. These observations, totaling ~193 ks after time filtering, were taken with the Advanced CCD Imaging Camera (ACIS) over a three-year period. Using a wavelet decomposition detection algorithm, the authors detected 318 individual point sources. For their analysis, they used a subset of 277 detections with >= net 10 counts (a limiting luminosity of approximately 1.2 x 1037 erg s-1 in the 0.5-2 keV band, outside the central 1.5 arcminutes bright galaxy core). This table contains this subset of 277 X-ray sources. The authors discuss the radial distribution of the point sources. Between 1.5 and 6 arcminutes from the center, 25% of the sources are likely to be background sources (active galactic nuclei (AGNs)) and 75% to be low-mass X-ray binaries (LMXBs) within the galaxy, while at radial distances greater than 6 arcminutes, background sources (AGN) will dominate the point sources. The authors explore short and long-term variability (over timescales of 1 day to three years) for X-ray point sources in this elliptical galaxy. 54 sources (24%) in the common ACIS fields of view show significant variability between observations. Of these, 37 are detected with at least 10 net counts in only one observation and thus may be "transient." In addition, ~10% of the sources in each observation show significant short-term variability. The cumulative luminosity function (LF) for the point sources in NGC 4636 can be represented as a power law of slope Alpha = 1.14 +/- 0.03. The authors do not detect, but estimate an upper limit of ~4.5 x 1037 erg s-1 to the current X-ray luminosity of, the historical supernova SN1939A. They find 77 matches between X-ray point sources and globular cluster (GC) candidates found in deep optical images of NGC 4636. In the annulus from 1.5 to 6 arcminutes of the galaxy center, 48 of the 129 X-ray point sources (37%) with >=10 net counts are matched with GC candidates. Since they expect 25% of these sources to be background AGN, the percentage matched with GCs could be as high as 50%. Of these matched sources, the authors find that ~70% are associated with the redder GC candidates, those that are thought to have near-solar metal abundance. The fraction of GC candidates with an X-ray point source match decreases with decreasing GC luminosity. The authors do not find a correlation between the X-ray luminosities of the matched point sources and the luminosity or color of the host GC candidates. The LFs of the X-ray point sources matched with GCs and those that are unmatched have similar slopes over 1.8 x 1037 erg s-1 <= Lx <= 1 x 1038 erg s-1. This table was created by the HEASARC in July 2009 based on electronic versions of Tables 2 and 3 from the paper obtained from the ApJ web site, but excluding the 7 entries in Table 3 which corresponded to weaker X-ray sources which were not listed in Table 2. Some of the values for the name parameter in the HEASARC's implementation of this table were corrected in April 2018. This is a service provided by NASA HEASARC .
NGC 1291 Chandra X-Ray Point Source Catalog
공공데이터포털
This table contains some of the results from a study of the X-ray binary (XRB) populations in the bulge and ring regions of the ring galaxy NGC 1291. Utilizing the four available Chandra observations totaling an effective exposure of 179 ks, the authors detect 169 X-ray point sources in the galaxy in the full band (0.3 - 8.0 keV) with a false-positive probability threshold of 10-6 (implying approximately 2 false detections given the size of the image). Of these sources, 75 are in the bulge and 71 are in the ring. The authors report photometric properties of these sources in a point-source catalog. There are ~ 40% of the bulge sources and ~ 25% of the ring sources showing > 3-sigma long-term variability in their X-ray count rate. The X-ray colors suggest that a significant fraction of the bulge (~ 75%) and ring (~ 65%) sources are likely low-mass X-ray binaries (LMXBs). The spectra of the nuclear source indicate that it is a low-luminosity active galactic nucleus (AGN) with moderate obscuration; spectral variability is observed between individual observations. The authors construct 0.3-8.0 keV X-ray luminosity functions (XLFs) for the bulge and ring XRB populations, taking into account the detection incompleteness and background AGN contamination. They reach 90% completeness limits of ~ 1.5 x 1037 and ~ 2.2 x 1037 erg s-1 for the bulge and ring populations, respectively. Both XLFs can be fit with a broken power-law model, and the shapes are consistent with those expected for populations dominated by LMXBs. In the paper, the authors perform detailed population synthesis modeling of the XRB populations in NGC 1291, which suggests that the observed combined XLF is dominated by an old LMXB population. They compare the bulge and ring XRB populations, and argue that the ring XRBs are associated with a younger stellar population than the bulge sources, based on the relative overdensity of X-ray sources in the ring, the generally harder X-ray color of the ring sources, the overabundance of luminous sources in the combined XLF, and the flatter shape of the ring XLF. This table was created by the HEASARC in May 2012 based on an electronic version of Table 2 from the reference paper obtained from the ApJ website. This is a service provided by NASA HEASARC .
M 87 Chandra X-Ray Point Source Catalog
공공데이터포털
The ACIS instrument on board the Chandra X-Ray Observatory has been used to carry out the first systematic study of low-mass X-ray binaries (LMXBs) in M 87 (NGC 4486), the giant elliptical galaxy near the dynamical center of the Virgo Cluster. These images - with a total exposure time of 154 ks - are the deepest X-ray observations obtained as of 2004 of M 87. The authors identified 174 X-ray point sources, (contained in this Browse table) of which ~ 150 are likely LMXBs. This LMXB catalog was combined with deep F475W and F850LP images taken with ACS on the Hubble Space Telescope (HST) (as part of the ACS Virgo Cluster Survey) to examine the connection between LMXBs and globular clusters in M87. Of the 1688 globular clusters in the authors' catalog, a fraction fX = 3.6% +/- 0.5% contain an LMXB. M 87 (NGC 4486) was observed with the Chandra Advanced CCD Imaging Spectrometer (ACIS) for 121 ks on 2002 July 5-6. In this table, only the S3 chip data are used. The data were processed following the CIAO data reduction threads, including a correction for charge transfer inefficiency (CTI). In addition, the authors used 38 ks of archival ACIS observations of M 87 taken on 2000 July 29. These data were processed in a fashion similar to the 2002 July data, except that no CTI correction was possible because the data were telemetered in graded mode. All reductions were carried out with CIAO, version 2.3, coupled with CALDB, version 2.21. In order to combine the event files into a single image for point-source detection, the authors obtained relative offsets by matching the celestial coordinates of two X-ray point sources. The relative offset was ~ 0.5". The total exposure time of the co-added image, excluding four background flares totaling ~ 2.5 ks, was 154 ks. This table was created by the HEASARC in March 2007 based on the CDS table J/ApJ/613/279, file table1.dat. This is a service provided by NASA HEASARC .
NGC 6530 Chandra Point Source Optical/IR Identifications Catalog
공공데이터포털
The authors have obtained astrometry and BVI photometry, down to a V magnitude of ~22, of the very young open cluster NGC 6530, from observations taken with the Wide Field Imager (WFI) camera at the MPG/ESO 2.2m Telescope. They have positionally matched their optical catalog with the list of X-ray sources found in a Chandra-ACIS observation of this cluster (Damiani et al. 2004, ApJ, 608, 781: available in Browse both via links from this table and also as the NGC6530CXO table), finding a total of 828 stars in common, 90% of which are pre-main sequence stars in NGC 6530. The data used in this work come from the combination of optical BVI images taken with the WFI camera made on 27-28 July 2000, a 60 ks Chandra ACIS X-ray observation, and public near-infrared data from the All-Sky Catalog of Point Sources of the Two Micron All Sky Survey (2MASS, CDS Cat. ). The total number of optical sources falling in the Chandra FOV is 8956, while the Damiani et al. (2004, ApJ, 608, 781) Catalog contains 884 X-ray sources, who concluded that at least 90% of the X-ray sources are very probable cluster members. To cross-correlate the X-ray and optical catalogs, the authors used a matching distance of < 4 sigmaX, where sigmaX is the the X-ray positional error, or 1.5", whichever is smaller, after a systematic shift between the X-ray and WFI positions of 0.2" in RA and -0.26" in Dec had been included. This resulted in a number of multiple identifications, among which 4 turned into unique identifications when a reduced distance of 1.5" was used. This finally resulted in 721 single, 44 double, and 3 triple identifications in the optical catalog; in addition, one X-ray source has 4 optical identifications, and another has 6 optical identifications. The total number of X-ray sources with WFI counterparts is therefore 770; of them, only 15 X-ray identified stars come from the Sung et al. (2000, AJ, 120, 333) Catalog and are not in the WFI Catalog. The total number of optical sources with an X-ray counterpart is 828. The agreement between X-ray and WFI optical positions is excellent in most cases, with offsets below 1". This database table was created by the HEASARC in February 2007, based on CDS table J/A+A/430/941/table5.dat This is a service provided by NASA HEASARC .
Galactic Center Chandra X-Ray Point Source Catalog
공공데이터포털
This table contains a catalog of 9017 X-ray sources identified in Chandra observations of a 2 degrees by 0.8 degrees field around the Galactic center. This enlarges the number of known X-ray sources in the region by a factor of 2.5. The catalog incorporates all of the ACIS-I observations as of 2007 August, which total 2.25 Ms of exposure. At the distance to the Galactic center (8 kpc), we are sensitive to sources with luminosities of 4 x 1032 erg s-1 (0.5-8.0 keV; 90% confidence) over an area of 1 degree2, and up to an order of magnitude more sensitive in the deepest exposure (1.0 Ms) around Sgr A*. The positions of 60% of the sources are accurate to <1 arcsecond (95% confidence), and 20% have positions accurate to <0.5 arcsec. The authors search for variable sources, and find that 3% exhibit flux variations within an observation, and 10% exhibit variations from observation-to-observation. They also find one source, CXOUGC J174622.7-285218, with a periodic 1745 s signal (1.4% chance probability), which is probably a magnetically accreting cataclysmic variable. The authors compare the spatial distribution of X-ray sources to a model for the stellar distribution, and find 2.8 sigma evidence for excesses in the numbers of X-ray sources in the region of recent star formation encompassed by the Arches, Quintuplet, and Galactic center star clusters. These excess sources are also seen in the luminosity distribution of the X-ray sources, which is flatter near the Arches and Quintuplet than elsewhere in the field. These excess point sources, along with a similar longitudinal asymmetry in the distribution of diffuse iron emission that has been reported by other authors, probably have their origin in the young stars that are prominent at a galactic lonitude ~ 0.1 degrees. This tables was designed to be inclusive, so sources of questionable quality are included, according to the authors. For instance, 134 sources have net numbers of counts in the 0.5-8.0 keV band that are consistent with 0 at the 90% confidence level. These sources are only detected in a single band and are presumably either very hard or very soft, detected in single observations because they were transients, or detected in stacked observations with wvdecomp at marginal significance. The authors have chosen to include them because they passed the test based on Poisson statistics from Weisskopf et al. (2007, ApJ, 657, 1026). The observations which were used to generate the source list herein tabulated are listed in Table 1 of the reference paper. This HEASARC table GALCENCXO supercedes and replaces the previous HEASARC tables CHANGALCEN and CHANC150PC, which were based on Muno et al. (2003, ApJ, 589, 225) and Muno et al. (2006, ApJS, 165, 173), respectively. This table was created by the HEASARC in March 2009 based on the machine-readable versions of Table 2, 3 and 4 from the paper which were obtained from the electronic ApJ website. The information on short-term variability given in Table 5 of the reference paper was not included in this HEASARC table, notice. This is a service provided by NASA HEASARC .
NGC 2237 Chandra X-Ray Point Source Catalog
공공데이터포털
The authors have obtained high spatial resolution Chandra X-ray images of the NGC 2237 young stellar cluster on the periphery of the Rosette Nebula. They detect 168 X-ray sources, 80% of which have stellar counterparts in USNO, Two Micron All Sky Survey, and deep FLAMINGOS images. These constitute the first census of the cluster members with 0.2 <~ M <~ 2 Msun. Star locations in near-infrared color-magnitude diagrams indicate a cluster age of around 2 Myr with a visual extinction of 1 <~ AV <~ 3 at 1.4 kpc, the distance of the Rosette Nebula's main cluster NGC 2244. The authors derive the K-band luminosity function and the X-ray luminosity function of the cluster, which indicate a population of ~ 400-600 stars. The X-ray-selected sample shows a K-excess disk frequency of 13%. The young Class II counterparts are aligned in an arc ~3 pc long suggestive of a triggered formation process induced by the O stars in NGC 2244. The diskless Class III sources are more dispersed. Several X-ray emitting stars are located inside the molecular cloud and around gaseous pillars projecting from the cloud. These stars, together with a previously unreported optical outflow originating inside the cloud, indicate that star formation is continuing at a low level and the cluster is still growing. This X-ray view of young stars on the western side of the Rosette Nebula complements the authors' earlier studies of the central cluster NGC 2244 and the embedded clusters on the eastern side of the Nebula. The large-scale distribution of the clusters and molecular material is consistent with a scenario in which the rich central NGC 2244 cluster formed first, and its expanding H II region triggered the formation of the now-unobscured satellite clusters Rosette Molecular Cloud (RMC) XA and NGC 2237. A large swept-up shell of material around the H II region is now in a second phase of collect-and-collapse fragmentation, leading to the recent formation of subclusters. Other clusters deeper in the molecular cloud appear unaffected by the Rosette Nebula expansion. Some sources which have information from published catalogs are listed by their source_number value below, where for convenience, [OI81] = Ogura & Ishida (1981, PASJ, 33, 149), [MJD95] = Massey, Johnson, & Degioia-Eastwood (1995, ApJ, 454, 151) and [BC02] = Berghofer & Christian (2002, A&A, 384, 890):
 53 = [OI81] 14 = [MJD95] 104; spectral type B1V; pmRA=11.0 mas/yr, pmDE=-2.8 mas/yr; 54 = [OI81] 10 = [MJD95] 108; spectral type B2V; pmRA=-2.3 mas/yr, pmDE=-11.9 mas/yr; 61 = V539 Mon [OI81] 13 = [MJD95] 110; MSX6C G206.1821-02.3456; pmRA=2.8 mas/yr, pmDE=0.4 mas/yr; 71 = [OI81] 12 = [MJD95] 102; pmRA=6.8 mas/yr, pmDE=0.6 mas/yr; 128 = [OI81] 35 = [MJD95] 471; spectral type A2:; pmRA=-0.8 mas/yr, pmDE=3.6 mas/yr; 138 = [OI81] 36 = [MJD95] 497; spectral type B5; pmRA=6.5 mas/yr, pmDE=2.1 mas/yr; 141 = [MJD95] 498; pmRA=-3.0 mas/yr, pmDE=1.9 mas/yr; 149 = [BC02] 11; known X-ray source; log(Lx(ROSAT/PSPC))=31.01 erg/s; pmRA=0.6 mas/yr, pmDE=-12.6 mas/yr; 161 = [MJD95] 653; pmRA=-1.0 mas/yr, pmDE=-5.4 mas/yr 
This table was created by the HEASARC in July 2010 based on electronic versions of Tables 1, 2, 3 and 4 of the reference paper which were obtained from the electronic ApJ web site. To distinguish between the 130 X-ray sources in the primary sample (Table 1 of the reference paper) and the 38 X-ray sources in the tentative sample (Table 2 of the reference paper), the HEASARC has created a parameter called source_sample which is set to 'P' for the primary sources and to 'T' for the tentative sources. This is a service provided by NASA HEASARC .
NGC 300 Chandra X-Ray Point Source Catalog
공공데이터포털
This table contains the source catalog from a new Chandra ACIS-I observation of the nearby (2.0 Mpc) SA(s)d spiral galaxy NGC 300 which was obtained as part of the Chandra Local Volume Survey (CLVS). This 63-ks exposure covers ~88% of the D25 isophote (R ~ 6.3 kpc) and yields a catalog of 95 X-ray point sources detected at high significance down to a limiting unabsorbed 0.35-8 keV luminosity of ~ 1036 erg/s. Sources were cross-correlated with a previous XMM-Newton catalog, and the authors find 75 "X-ray transient candidate" sources that were detected by one observatory, but not the other. They derive an X-ray scale length of 1.7 +/- 0.2 kpc and a recent star formation rate of 0.12 Msun/yr in excellent agreement with optical observations. Deep, multi-color imaging from the Hubble Space Telescope, covering ~ 32% of this Chandra field, was used to search for optical counterparts to the X-ray sources, and the authors have developed a new source classification scheme to determine which sources are likely X-ray binaries, supernova remnants, and background active galactic nucleus candidates. In the reference paper, the authors present the X-ray luminosity functions (XLFs) at different X-ray energies, and find the total NGC 300 X-ray point-source population to be consistent with other late-type galaxies hosting young stellar populations (<~ 50 Myr). They find that the XLF of sources associated with older stellar populations has a steeper slope than the XLF of X-ray sources coinciding with young stellar populations, consistent with theoretical predictions. NGC 300 was observed on 2010 September 25 for 63 ks using ACIS-I during the Chandra X-Ray Observatory Cycle 12, observation ID 12238. The source detection strategy that was used is described in Section 2.3 of the reference paper. ACIS-Extract (AE) was run a final time on the source list that was produces after an initial run of wavdetect followed by several iterations of AE, and the Poisson probability of not being a source (pns) value was computed in each of the following nine energy bands: 0.5 - 8.0, 0.5 - 2.0, 2.0 - 8.0, 0.5 - 1.0, 1.0 - 2.0, 2.0 - 4.0, 4.0 - 8.0, 0.35 - 1.0 and 0.35 - 8.0 keV. To be included in the final NGC 300 catalog, a source was required to have a pns value less than 4 x 10-6 in any of the nine energy bands; if only the 0.35 - 8 keV band were considered, ~4% of significant sources would have been lost. The final CLVS source catalog for NGC 300 contains 95 sources. This table was initially created by the HEASARC in September 2014 based on CDS Catalog J/ApJ/758/15/ files table4.dat, table5.dat, table6.dat and table7.dat containing the X-ray properties of the 95 Chandra point sources found in this study. The information on the optical counterparts to (some of) the Chandra X-ray sources and on the X-ray point source classification (presented in Tables 16 and 17, respectively, of the reference paper) is not included herein. It was updated in September 2015 to include the unabsorbed 0.35-8.0 keV energy fluxes (in the parameter herein called b4_flux) from the second reference paper. This is a service provided by NASA HEASARC .
M 101 Chandra X-Ray Point Source Catalog
공공데이터포털
NGC 4278 Chandra X-Ray Point Source Catalog
공공데이터포털
This table lists some of the properties of the discrete X-ray sources detected in the authors' monitoring program of the globular cluster (GC)-rich elliptical galaxy, NGC 4278, observed with Chandra ACIS-S in six separate pointings, resulting in a co-added exposure of 458 ks. From this deep observation, 236 sources have been detected within the region overlapped by all observations, 180 of which lie within the D25 ellipse angular diameter of the galaxy. These 236 sources range in X-ray luminosity LX from 3.5 x 1036 erg s-1 (with 3-sigma upper limit <= 1 x 1037 erg s-1) to ~2 x 1040 erg s-1, including the central nuclear source which has been classified as a LINER. From optical data, 39 X-ray sources have been determined to be coincident with a GC, these sources tend to have high X-ray luminosity, with 10 of these sources exhibiting LX > 1 x 1038 erg s-1. From X-ray source photometry, it has been determined that the majority of the 236 point sources that have well-constrained colors have values that are consistent with typical low-mass X-ray binary spectra, with 29 of the sources expected to be background objects from the log N-log S relation. There are 103 sources in this population that exhibit long-term variability, indicating that they are accreting compact objects. Three of these sources have been identified as transient candidates, with a further three possible transients. Spectral variations have also been identified in the majority of the source population, where a diverse range of variability has been identified, indicating that there are many different source classes located within this galaxy. This HEASARC table contains the master source list (Table 3 of the reference paper) and the X-ray properties of the sources in the co-added observations (Table 4 of the reference paper), but not the X-ray properties of the sources in the 6 individual observations (Tables 5-10 of the reference paper). The details of the six individual pointings used in this study, e.g., the Chandra ObsIDs, dates, exposure times and cleaned exposure times, are given in Table 1 of the reference paper, and repeated here:
 Obs. No.OBSID Date Exposure (s) Cleaned Exposure (s) 1 4741 2005 Feb 3 37462.0 37264.5 2 7077 2006 Mar 16 110303.8 107736.7 3 7078 2006 Jul 25 51433.2 48076.2 4 7079 2006 Oct 24 105071.7 102504.6 5 7081 2007 Feb 20 110724.0 107564.5 6 7080 2007 Apr 20 55824.8 54837.5 Total Co-added 470819.5 457984.0 
Notes. The pointing OBSID 7181 was taken before OBSID 7080, so to maintain the time sequence of the exposures these observation numbers have been labeled as above in the reference paper. The details of the energy bands and X-ray colors used in this study are given in Table 2 of the reference paper, and repeated here:
 Band/Color Energy Range/Definition Broad (B) 0.3-8 keV Soft (S) 0.3-2.5 keV Hard (H) 2.5-8 keV Soft 1 (S1) 0.3-0.9 keV Soft 2 (S2) 0.9-2.5 keV Conventional broad (Bc) 0.5-8 keV Conventional soft (Sc) 0.5-2 keV Conventional hard (Hc) 2-8 keV Hardness ratio HR (Hc-Sc)/(Hc+Sc) X-ray color C21 -log(S2) + log(S1) = log(S1/S2) X-ray color C32 -log(H) + log(S2) = log(S2/H) 
This table was created by the HEASARC in April 2009 based on machine-readable versions of Tables 3 and 4 from the reference paper which were obtained from the ApJ web site. This is a service provided by NASA HEASARC .