데이터셋 상세
미국
OCRA-p Survey of a Subset of CRATES Sources
Knowledge of the population of radio sources in the range ~ 2-200 GHz range is important for understanding their effects on measurements of the cosmic microwave background power spectrum. This table contains measurements of the 30-GHz flux densities of 605 radio sources from the Combined Radio All-sky Targeted Eight-GHz Survey (CRATES), which have been made with the One Centimetre Receiver Array-prototype (OCRA-p) on the Torun 32-m telescope. The flux densities of sources that were also observed by Wilkinson Microwave Anisotropy Probe (WMAP) and previous OCRA surveys are in broad agreement with those reported here, however a number of sources display intrinsic variability. The authors find a good correlation between the 30 GHz and Fermi gamma-ray flux densities for sources in common. In their paper, they examine the radio spectra of all observed sources and report a number of gigahertz-peaked and inverted spectrum sources. These measurements will be useful for comparison to those from the Low Frequency Instrument of the Planck satellite, which will make some of its most sensitive observations in the region covered here. The selection criteria for the subsample of CRATES sources observed by the OCRA-p are given in Section 2 of the reference paper (q.v.). Plots of the measurements of each source over time and the aggregated source spectra between 26 MHz and 150 GHz are available online at the authors' web site: <a href="http://www.jb.man.ac.uk/research/ocra/crates/">http://www.jb.man.ac.uk/research/ocra/crates/</a>. This table was created by the HEASARC in May 2011 based on an electronic version of Table 3 of the reference paper which was obtained from the authors' web site <a href="http://www.jb.man.ac.uk/research/ocra/crates/">http://www.jb.man.ac.uk/research/ocra/crates/</a>. Notice that the version here is the 10-Jan-2011 version which contains corrections to the 30-GHz flux densities and their errors of ~ 1% in the calibration and the application of the gain-elevation curve. This is a service provided by NASA HEASARC .
데이터 정보
연관 데이터
CRATES Flat-Spectrum Radio Source Catalog
공공데이터포털
The authors have assembled an 8.4 GHz survey of bright, flat-spectrum (alpha > -0.5) radio sources with nearly uniform extragalactic (|b| > 10 degrees) coverage for sources brighter than a 4.8 GHz flux density S_4.8GHz = 65 mJy. The catalog is assembled from existing observations (especially the Cosmic Lens All-Sky Survey, CLASS, and the Wright et al. PMN-CA survey), augmented by reprocessing of archival VLA and ATCA data and by new observations to fill in coverage gaps. The authors refer to this program as CRATES, the Combined Radio All-Sky Targeted Eight-GHz Survey. The resulting catalog provides precise positions, subarcsecond structures, and spectral indices for some 11,000 sources. The authors describe the morphology and spectral index distribution of the sample and comment on the survey's power to select several classes of interesting sources, especially high-energy blazars. Comparison of CRATES with other high-frequency surveys also provides unique opportunities for identification of high-power radio sources. This table contains 14467 entries, where each entry corresponds to an 8.4-GHz counterpart source (or absence thereof) to one of 11,131 4.8-GHz sources. The number of entries exceeds the number of 4.8-GHz sources because there are many cases in which there are multiple (from 2 - 20) 8.4-GHz counterparts to a single 4.8-GHz source. There are also 762 entries in which no 8.4-GHz counterpart was detected (morph_type = 'N'). This table was created by the HEASARC in August 2007 based on the electronic version of Table 5 obtained from the electronic ApJ web site. This is a service provided by NASA HEASARC .
Owens Valley Radio Observatory 40-m 31-GHZ Radio Source Catalog
공공데이터포털
The 100m Robert C. Byrd Green Bank Telescope (GBT) and the 40m Owens Valley Radio Observatory (OVRO) telescope have been used to conduct a 31-GHz survey of 3165 known extragalactic radio sources over 143 deg2 of the sky. Target sources were selected from the NRAO VLA Sky Survey (NVSS) in fields observed by the Cosmic Background Imager (CBI); most are extragalactic active galactic nuclei (AGNs) with 1.4-GHz flux densities of 3-10 mJy. Using a maximum-likelihood analysis to obtain an unbiased estimate of the distribution of the 1.4 - 31 GHz spectral indices of these sources, the authors find a mean 31 - 1.4 GHz flux ratio of 0.110 +/- 0.003 corresponding to a spectral index alpha = -0.71+/-0.01 (Snu ~ nualpha); 9.0% +/- 0.8% of the sources have alpha > -0.5 and 1.2% +/- 0.2% have alpha > 0. By combining this spectral-index distribution with 1.4GHz source counts, the authors predict 31-GHz source counts in the range 1 mJy 31 < 4 mJy, N(>S31) = (16.7+/-1.7)deg-2(S31/1mJy)(-0.80+/-0.07). In this study, the authors present a detailed characterization of the impact of the discrete source foreground on arcminute-scale 31-GHz anisotropy measurements based upon two observational campaigns. The first campaign (the results of which are given in this table) was carried out with the OVRO 40m telescope at 31 GHz from 2000 September through 2002 December. The second campaign (the results of which are given in the GBT31GHZ table) used the GBT from 2006 February to May. A companion paper (Sievers et al. 2009arXiv0901.4540S) presents the five-year CBI total intensity power spectrum incorporating the results of the point-source measurements discussed here. Reported error bars include a 10% and 5% rms gain uncertainty for GBT and OVRO measurements, respectively. Sources detected at greater than 4 sigma at 31 GHz are flagged (detection_flag = 'Y'); for this calculation, the random gain uncertainty was excluded. In all 3165 sources were observed. The GBT catalog (the HEASARC GBT31GHZ table) contains 1490 sources. Of the 2315 useful OVRO observations many of the non-detections (and a few detections) were superceded by more sensitive GBT observations; the OVRO catalog contained in the present table therefore contains data on 1675 sources. The detection rate of the OVRO measurements was 11%, and that of the GBT measurements 25%. In all, 18% of the sources were detected at 31 GHz. This table was created by the HEASARC in June 2012 based on CDS Catalpog J/ApJ/704/1433 file table2.dat. This is a service provided by NASA HEASARC .
Green Bank Telescope 100-m 31-GHZ Radio Source Catalog
공공데이터포털
The 100m Robert C. Byrd Green Bank Telescope (GBT) and the 40m Owens Valley Radio Observatory (OVRO) telescope have been used to conduct a 31-GHz survey of 3165 known extragalactic radio sources over 143 deg2 of the sky. Target sources were selected from the NRAO VLA Sky Survey (NVSS) in fields observed by the Cosmic Background Imager (CBI); most are extragalactic active galactic nuclei (AGNs) with 1.4-GHz flux densities of 3-10 mJy. Using a maximum-likelihood analysis to obtain an unbiased estimate of the distribution of the 1.4 - 31 GHz spectral indices of these sources, the authors find a mean 31 - 1.4 GHz flux ratio of 0.110 +/- 0.003 corresponding to a spectral index alpha = -0.71+/-0.01 (Snu ~ nualpha); 9.0% +/- 0.8% of the sources have alpha > -0.5 and 1.2% +/- 0.2% have alpha > 0. By combining this spectral-index distribution with 1.4GHz source counts, the authors predict 31-GHz source counts in the range 1 mJy 31 < 4 mJy, N(>S31) = (16.7+/-1.7)deg-2(S31/1mJy)(-0.80+/-0.07). In this study, the authors present a detailed characterization of the impact of the discrete source foreground on arcminute-scale 31-GHz anisotropy measurements based upon two observational campaigns. The first campaign (the results of which are given in the OVRO31GHZ table) was carried out with the OVRO 40m telescope at 31 GHz from 2000 September through 2002 December. The second campaign (the results of which are given in the present table) used the GBT from 2006 February to May. A companion paper (Sievers et al. 2009arXiv0901.4540S) presents the five-year CBI total intensity power spectrum incorporating the results of the point-source measurements discussed here. Reported error bars include a 10% and 5% rms gain uncertainty for GBT and OVRO measurements, respectively. Sources detected at greater than 4 sigma at 31 GHz are flagged (detection_flag = 'Y'); for this calculation, the random gain uncertainty was excluded. In all 3165 sources were observed. The GBT catalog (this table) contains 1490 sources. Of the 2315 useful OVRO observations many of the non-detections (and a few detections) were superceded by more sensitive GBT observations; the OVRO catalog contained in the HEASARC's OVRO31GHZ table therefore contains data on 1675 sources. The detection rate of the OVRO measurements was 11%, and that of the GBT measurements 25%. In all, 18% of the sources were detected at 31 GHz. This table was created by the HEASARC in June 2012 based on CDS Catalpog J/ApJ/704/1433 file table3.dat. This is a service provided by NASA HEASARC .
XMM-Newton M 31 Survey Source Catalog
공공데이터포털
This table contains a source catalog based on XMM-Newton observations of the bright Local Group spiral galaxy M 31. In an analysis of XMM archival observations of M 31, the authors studied the population of X-ray sources (X-ray binaries, supernova remnants) down to a 0.2-4.5 keV luminosity of 4.4 x 1034 erg/s. EPIC hardness ratios and optical and radio information were used to distinguish between different source classes. The survey detected 856 sources in an area of 1.24 square degrees. The authors correlated their sources with earlier M 31 X-ray catalogs and used information from optical, infra-red and radio wavelengths. As sources within M 31, they detected 21 supernova remnants (SNR) and 23 SNR candidates, 18 supersoft source (SSS) candidates, 7 X-ray binaries (XRBs) and 9 XRB candidates, as well as 27 globular cluster sources (GlC) and 10 GlC candidates, which most likely are low mass XRBs within the GlC. Comparison to earlier X-ray surveys revealed transients not detected with XMM-Newton, which add to the number of M 31 XRBs. There are 567 sources classified as hard, which might either be XRBs or Crab-like SNRs in M 31 or background AGN. The number of 44 SNRs and candidates more than doubles the X-ray-detected SNRs. 22 sources are new SNR candidates in M 31 based on X-ray selection criteria. Another SNR candidate might be the first plerion detected outside the Galaxy and the Magellanic Clouds. On the other hand, six sources are foreground stars and 90 are foreground star candidates, one is a BL Lac-type active galactic nucleus (AGN) and 36 are AGN candidates, one source coincides with the Local Group galaxy M 32, one with a background galaxy cluster (GCl) and another is a GCl candidate, all sources which are not connected with M31. In a second paper, the authors presented an extension to the original 2005 XMM-Newton X-ray source catalog of M 31 which contained 39 newly found sources. These sources have been added to the original 856 sources to make a combined catalog of 895 X-ray sources which is contained herein. This table was originally created by the HEASARC in May 2005 based on the CDS table J/A+A/434/483/ file table2.dat (sources numbered 1 to 856). It was updated by the HEASARC in June 2008 by adding the 39 sources from the CDS table J/A+A/480/599/ file table3.dat (sources numbered 857 to 895). This is a service provided by NASA HEASARC .
AT20G/Fermi 1FGL Source Catalog
공공데이터포털
The high-frequency radio sky, like the gamma-ray sky surveyed by the Fermi satellite, is dominated by flat-spectrum radio quasars and BL Lac objects at bright flux levels. To investigate the relationship between radio and gamma-ray emission in extragalactic sources, the authors have cross-matched the Australia Telescope 20-GHz survey catalog (AT20G: Murphy et al. 2010, MNRAS, 402, 2403, available as a HEASARC Browse table) with the Fermi-LAT 1-year Point Source Catalog (1FGL: Abdo et al. 2010, ApJS, 188, 405, also available as the HEASARC Browse table FERMILPSC). The 6.0 sr of sky covered by both catalogs (Declination < 0 degrees, |b| > 1.5 degrees) contains 5890 AT20G radio sources and 604 1FGL gamma-ray sources. The AT20G source positions are accurate to within ~1 arcsec and, after excluding known Galactic sources, 43% of Fermi 1FGL sources have an AT20G source within the 95% Fermi confidence ellipse. Monte Carlo tests imply that at least 95% of these matches are genuine associations. Only five gamma-ray sources (1% of the Fermi catalog) have more than one AT20G counterpart in the Fermi error box. The AT20G matches also generally support the active galactic nucleus (AGN) associations in the First LAT AGN Catalog. The authors find a trend of increasing gamma-ray flux density with 20 GHz radio flux density. The Fermi detection rate of AT20G sources is close to 100% for the brightest 20 GHz sources, decreasing to 20% at 1 Jy, and to roughly 1% at 100 mJy. Eight of the matched AT20G sources have no association listed in 1FGL and are presented here as potential gamma-ray AGNs for the first time. The authors also identify an alternative AGN counterpart to one 1FGL source. The percentage of Fermi sources with AT20G detections decreases toward the Galactic plane, suggesting that the 1FGL catalog contains at least 50 Galactic gamma-ray sources in the southern hemisphere that are yet to be identified. This table contains the complete list of all 233 Fermi-AT20G matches. This table was created by the HEASARC in August 2010 based on the electronic version of Table 4 obtained from the ApJ web site. This is a service provided by NASA HEASARC .
Atacama Cosmology Telescope 2008 Survey 148-GHz Extragalactic Source Catalog
공공데이터포털
This table contains a list of extragalactic radio sources detected in a 455 square-degree map of the southern sky made at a frequency of 148 GHz from the Atacama Cosmology Telescope (ACT) 2008 observing season. This catalog has 157 sources with flux densities spanning two orders of magnitude from 15 to 1500 mJy. Comparison to other catalogs shows that 98% of the ACT detections correspond to sources detected at lower radio frequencies. Three of the sources appear to be associated with the brightest cluster galaxies of low redshift X-ray selected galaxy clusters. Estimates of the radio to mm-wave spectral indices and differential counts of the sources further bolster the hypothesis that they are nearly all radio sources, and that their emission is not dominated by re-emission from warm dust. In a bright (>50 mJy) 148 GHz-selected sample with complete cross-identifications from the Australia Telescope 20-GHz survey, the authors of the study observe an average steepening of the spectra between 5, 20, and 148 GHz with median spectral indices of alpha5-20 = -0.07 +/- 0.06, alpha20-148 = -0.39 +/- 0.04, and alpha5-148 = -0.20 +/- 0.03. When the measured spectral indices are taken into account, the 148-GHz differential source counts are consistent with previous measurements at 30 GHz in the context of a source count model dominated by flat spectrum radio sources. Extrapolating with an appropriately rescaled model for the radio source counts, the Poisson contribution to the spatial power spectrum from synchrotron-dominated sources with flux density less than 20 mJy is CSync = (2.8 +/- 0.3) x 10-6 microKelvin2. This table was created by the HEASARC in January 2011 based on an electronic version of Table A1 from the paper (the Point Source Catalog) which was obtained from the LAMBDA website at http://lambda.gsfc.nasa.gov/product/suborbit/act_prod_table.cfm This is a service provided by NASA HEASARC .
North Celestial Pole Region Radio Sources Detected by the 21cm Array
공공데이터포털
This table contains the catalog of 624 radio sources detected around the North Celestial Pole (NCP) with the 21 Centimeter Array (21CMA), a radio interferometer dedicated to the statistical measurement of the epoch of reionization (EoR). The data are taken from a 12-hr observation made on 2013 April 13, with a frequency coverage from 75 to 175 MHz and an angular resolution of ~4 arcminutes. The catalog includes flux densities at eight sub-bands across the 21CMA bandwidth and provides the in-band spectral indices for the detected sources. To reduce the complexity of interferometric imaging from the so-called "w" term and ionospheric effects, the present analysis is restricted to the east-west baselines within 1500 m only. 624 radio sources are found within 5 degrees around the NCP down to ~0.1 Jy (100 mJy). These source counts are compared, and also exhibit a good agreement, with deep low-frequency observations made recently with the GMRT and MWA. In particular, for fainter radio sources below ~1 Jy, the authors find a flattening trend of source counts toward lower frequencies. While the thermal noise (~0.4 mJy) is well controlled to below the confusion limit, the dynamical range (~104) and sensitivity of current 21CMA imaging are largely limited by calibration and deconvolution errors, especially the grating lobes of very bright sources, such as 3C061.1, in the NCP field, which result from the regular spacings of the 21CMA. The authors note that particular attention should be paid to the extended sources, and their modeling and removal may constitute a large technical challenge for current EoR experiments. Their analysis may serve as a useful guide to the design of next generation low-frequency interferometers like the Square Kilometre Array (SKA). The 21CMA is a ground-based radio interferometer dedicated to the detection of the EoR. The array, sited in the Ulastai valley of western China, consists of 81 pods or stations, and a total of 10,287 log-periodic antennas are deployed in two perpendicular arms along the east-west (6.1 km) (see Figure 1 in the reference paper) and north-south (4 km) directions, respectively. The spacing of these 81 pods is chosen such that a sufficiently large number of redundant baselines and a good uniform UV coverage can both be guaranteed. Each antenna element has 16 pairs of dipoles with lengths varying from 0.242 to 0.829 m, optimized to cover a frequency range of 50-200 MHz, which gives rise to an angular resolution of 3 arcminutes at 200 MHz. All of the antennas are fixed on the ground and point at the NCP for the sake of simplicity and economy. In the current work, the radio point sources observed with the 40 pods of the 21 Centimeter Array (21CMA) E-W baselines in an integration of 12 hours made on 2013 April 13 centered on the North Celestial Pole (NCP) are presented. An extra deep sample with a higher sensitivity from a longer integration time of up to years will be published later. The authors have detected a total of 624 radio sources over the central field within 3 degrees in a frequency range of 75-175 MHz band and in the outer annulus from 3-5 degrees in the 75-125 MHz band. By performing a Monte-Carlo simulation, the authors estimate a completeness of 50% at a flux density of ~0.2 Jy. This table was created by the HEASARC in May 2017 based upon the CDS Catalog J/ApJ/832/190 file table3.dat. Some of the values for the name parameter in the HEASARC's implementation of this table were corrected in April 2018. This is a service provided by NASA HEASARC .