데이터셋 상세
미국
VLA-COSMOS Survey 324-MHz Continuum Source Catalog
This table contains a source catalog based on 90-cm (324-MHz) Very Large Array (VLA) imaging of the COSMOS field, comprising a circular area of 3.14 square degrees centered on 10<sup>h</sup> 00<sup>m</sup> 28.6<sup>s</sup>, _02<sup>o</sup> 12' 21" (J2000.0 RA and Dec). The image from the merger of 3 nights of observations using all 27 VLA antennas had an effective total integration time of ~ 12 hours, an 8.0 arcsecond x 6.0 arcsecond angular resolution, and an average rms of 0.5 mJy beam<sup>-1</sup>. The extracted catalog contains 182 sources (down to 5.5 sigma), 30 of which are multi-component sources. Using Monte Carlo artificial source simulations, the authors derive the completeness of the catalog, and show that their 90-cm source counts agree very well with those from previous studies. In their paper, the authors use X-ray, NUV-NIR and radio COSMOS data to investigate the population mix of this 90-cm radio sample, and find that the sample is dominated by active galactic nuclei. The average 90-20 cm spectral index (S_nu_~ nu<sup>alpha</sup>, where S<sub>nu</sub> is the flux density at frequency nu and alpha the spectral index) of the 90-cm selected sources is -0.70, with an interquartile range from -0.90 to -0.53. Only a few ultra-steep-spectrum sources are present in this sample, consistent with results in the literature for similar fields. These data do not show clear steepening of the spectral index with redshift. Nevertheless, this sample suggests that sources with spectral indices steeper than -1 all lie at z >~ 1, in agreement with the idea that ultra-steep-spectrum radio sources may trace intermediate-redshift galaxies (z >~ 1). Using both the signal and rms maps (see Figs. 1 and 2 in the reference paper) as input data, the authors ran the AIPS task SAD to obtain a catalog of candidate components above a given local signal-to-noise ratio (S/N) threshold. The task SAD was run four times with search S/N levels of 10, 8, 6 and 5, using the resulting residual image each time. They recovered all the radio components with a local S/N > 5.00. Subsequently, all the selected components were visually inspected, in order to check their reliability, especially for the components near strong side-lobes. After a careful analysis, a S/N threshold of 5.50 was adopted as the best compromise between a deep and a reliable catalog. The procedure yielded a total of 246 components with a local S/N > 5.50. More than one component, identified in the 90-cm map sometimes belongs to a single radio source (e.g. large radio galaxies consist of multiple components). Using the 90-cm COSMOS radio map, the authors combined the various components into single sources based on visual inspection. The final catalog (contained in this HEASARC table) lists 182 radio sources, 30 of which have been classified as multiple, i.e. they are better described by more than a single component. Moreover, in order to ensure a more precise classification, all sources identified as multi-component sources have been also double-checked using the 20-cm radio map. The authors found that all the 26 multiple 90-cm radio sources within the 20-cm map have 20-cm counterpart sources already classified as multiple. The authors have made use of the VLA-COSMOS Large and Deep Projects over 2 square degrees, reaching down to an rms of ~15 µJy beam<sup>1</sup> ^ at 1.4 GHz and 1.5 arcsec resolution (Schinnerer et al. 2007, ApJS, 172, 46: the VLACOSMOS table in the HEASARC database). The 90-cm COSMOS radio catalog has, however, been extracted from a larger region of 3.14 square degrees (see Fig. 1 and Section 3.1 of the reference paper). This implies that a certain number of 90-cm sources (48) lie outside the area of the 20-cm COSMOS map used to select the radio catalog. Thus, to identify the 20-cm counterparts of the 90-cm radio sources, the authors used the joint VLA-COSMOS catalog (Schinnerer et al. 2010, ApJS, 188, 384: the VLACOSMJSC table in the HEASARC database) for the 134
데이터 정보
연관 데이터
COSMOS VLA 327MHz Catalog
공공데이터포털
COSMOS is an astronomical survey designed to probe the formation and evolution of galaxies as a function of cosmic time (redshift) and large scale structural environment. The survey covers a 2 square degree equatorial field with imaging by most of the major space-based telescopes (Hubble, Spitzer, GALEX, XMM, Chandra) and a number of large ground based telescopes (Subaru, VLA, ESO-VLT, UKIRT, NOAO, CFHT, and others). Over 2 million galaxies are detected, spanning 75% of the age of the universe.The 90 cm Very Large Array imaging of the COSMOS field comprises a circular area of 3.14 square degrees at 8.0 arcsec by 6.0 arcsec angular resolution with an average rms of 0.5 mJy/beam. The extracted catalogue contains 182 sources (down to 5.5 sigma), 30 of which are multicomponent sources.
VLA-COSMOS Project 1.4-GHz Joint Source Catalog
공공데이터포털
In the context of the VLA-COSMOS Deep project, additional VLA A array observations at 1.4 GHz were obtained for the central degree of the COSMOS field and combined with the existing data from the VLA-COSMOS Large project. A newly constructed Deep mosaic with a resolution of 2.5 arcseconds was used to search for sources down to 4 sigma with 1 sigma ~ 12 µJy beam-1 in the central 50' x 50'. This new catalog is combined with the catalog from the Large project (obtained at 1.5" x 1.4" resolution) to construct a new Joint catalog. All sources listed in the new Joint catalog have peak flux densities of >= 5 sigma at 1.5" and/or 2.5" resolution to account for the fact that a significant fraction of sources at these low flux levels are expected to be slightly resolved at 1.5" resolution. All properties listed in the Joint catalog, such as peak flux density, integrated flux density, and source size, are determined in the 2.5" resolution Deep image. In addition, the Joint catalog contains 43 newly identified multi-component sources. This table was created by the HEASARC in June 2010 based on the electronic version of Table 3 from the reference paper which was obtained from the ApJ web site. This is a service provided by NASA HEASARC .
VLA-COSMOS 3-GHz Large Project Source Catalog
공공데이터포털
This table contains some of the results from the VLA-COSMOS 3-GHz Large Project based on 384 hours of observations with the Karl G. Jansky Very Large Array (VLA) at 3 GHz (10 cm) toward the 2 square degree Cosmic Evolution Survey (COSMOS) field. The final mosaic reaches a median rms of 2.3 µJy (µJy) beam-1 over the 2 square degrees at an angular resolution of 0.75 arcseconds. To fully account for the spectral shape and resolution variations across the broad (2-GHz) band, the authors imaged all the data with a multiscale, multifrequency synthesis algorithm. In this table, the catalog of 10,830 radio sources down to 5 sigma is presented, out of which 67 are combined from multiple components. Comparing the positions of these 3-GHz sources with those from the Very Long Baseline Array (VLBA)-COSMOS survey, the authors estimate that the astrometry is accurate to 0.01 arcseconds at the bright end (signal-to-noise ratio, S/N3GHz > 20). Survival analysis on these data combined with the VLA-COSMOS 1.4-GHz Joint Project catalog yields an expected median radio spectral index alpha = -0.7. The authors compute completeness corrections via Monte Carlo simulations to derive the corrected 3-GHz source counts. Their counts are in agreement with previously derived 3-GHz counts based on single-pointing (0.087 square degrees) VLA data. In summary, the VLA-COSMOS 3-GHz Large Project simultaneously provides the largest and deepest radio continuum survey at high (0.75") angular resolution to date, bridging the gap between last-generation and next-generation surveys. The catalog contains sources selected down to a 5-sigma (where sigma ~2.3 µJy/beam) threshold. This catalog can be used for statistical analyses, accompanied with the corrections given in the data & catalog release paper. All completeness and bias corrections and source counts presented in the paper were calculated using this sample. The total fraction of spurious sources in the COSMOS 2 sq.deg. field is below 2.7% within this catalog. However, an increase of spurious sources up to 24% at 5.0 < S/N < 5.5 is present (for details see Sec. 5.2., Fig. 17 and Table 3 of the reference paper). A subsample with a minimal spurious source fraction can be selected by requiring an additional cutoff S/N >= 5.5 for single component sources (MULTI=0). The total fraction of spurious sources in the COSMOS 2 sq.deg. field within such a selected sample is below 0.4%, and the fraction of spurious sources is below 3% even at the lowest S/N of 5.5. This table was created by the HEASARC in June 2017 based on CDS Catalog J/A+A/602/A1 file table1.dat, the VLA-COSMOS 3-GHz radio source catalog. This is a service provided by NASA HEASARC .
VLA 74-MHz Deep High-Resolution Survey Source Catalog
공공데이터포털
This table contains some of the results from a 74-MHz survey of a 165 deg2 region located near the North Galactic Pole (NGP). This survey has an unprecedented combination of both spatial resolution (25" FWHM) and sensitivity (1-sigma as low as 24mJy/beam). The authors detect 949 sources at the 5-sigma level in this region, enough to begin exploring the nature of the 74-MHz source population. In their paper, they present differential source counts, spectral index measurements, and the size distribution as determined from counterparts in the high-resolution FIRST 1.4-GHz survey. They find a trend of steeper spectral indices for the brighter sources. Further, there is a clear correlation between spectral index and median source size, with the flat-spectrum sources being much smaller on average. Ultra-steep spectrum objects (power-law index alpha <= -1.2, where S_nu ~ nualpha) are identified. These sources are excellent candidates for high-redshift radio galaxies. The data used to produce this survey come from observations taken on 1998 March 7 intended to map two normal galaxies at 74 MHz (NGC 4565 and NGC 4631). These two pointings were separated by 6.4 degrees, roughly the radius of the primary beam at 74 MHz, allowing them to be ideally combined to produce a single deep image roughly 17 x 10 degrees in size. The combination of VLA A-configuration resolution (25 arcsec), favorable ionospheric conditions, and pointings in directions near the NGP, where the background temperature is low, produced the deepest observation ever obtained below 100 MHz. The same algorithm that was used in the 1.4-GHz NVSS was used to identify and characterize sources in this 74-MHz survey. The source detection algorithm had a threshold such that sources must have both a peak and integrated flux density level of at least 5 times the local rms noise level. Since the rms noise level varied from 24 mJy/beam to 80 mJy mJy/beam at the chosen field edge, the absolute level of the source-detection threshold of 5-sigma likewise varied over the image. This table was created by the HEASARC in August 2010 based on CDS catalog J/ApJS/150/417/ file table2.dat. This is a service provided by NASA HEASARC .
VLA-COSMOS Large Project 1.4-GHz Source Catalog
공공데이터포털
The international COSMOS (Cosmic Evolution) survey (Scoville et al. 2007, ApJS, 172, 1) is a panchromatic imaging and spectroscopic survey of a 1.4 degree by 1.4 degree field designed to probe galaxy and SMBH (supermassive black hole) evolution as a function of cosmic environment. One major aspect of the COSMOS survey is the Hubble Space Telescope (HST) Treasury Project (Scoville et al. 2007, ApJS, 172, 38), entailing the largest ever allocation of HST telescope time. The equatorial location of the COSMOS field offers the critical advantage of allowing major observatories from both hemispheres to join forces in this endeavor. State-of-the-art imaging data at all wavelengths (X-ray to centimeter, plus large optical spectroscopic campaigns using the VLT VIMOS and the Magellan IMACS instruments (Lilly et al. 2007; Impey et al. 2007; Trump et al. 2007) have been or are currently being obtained for the COSMOS field. These make the COSMOS field an excellent resource for observational cosmology and galaxy evolution in the important redshift range z ~ 0.5 - 3, a time span covering ~ 75% of the lifetime of the universe. The VLA-COSMOS Large Project produced a catalog of 3643 radio sources found in the 2 square degrees COSMOS field at 1.4 GHz with a signal-to-noise threshold S/N >= 4.5. The observations in the VLA A and C configurations resulted in a resolution of 1.5" by 1.4" and a mean rms noise of ~ 10.5 µJy (µJy) beam-1 in the central 1 deg2, and of 15 uJy in the 2 deg2 field. Eighty radio sources are clearly extended consisting of multiple components, and most of them appear to be double-lobed radio galaxies. The astrometry of the catalog has been thoroughly tested, and the uncertainty in the relative and absolute astrometry are 130 and < 55 mas, respectively. This table was created by the HEASARC in September 2007 based on the electronic version of Table 3 from the reference paper which was obtained from the ApJ web site. This is a service provided by NASA HEASARC .
COSMOS VLA Deep Catalog
공공데이터포털
COSMOS is an astronomical survey designed to probe the formation and evolution of galaxies as a function of cosmic time (redshift) and large scale structural environment. The survey covers a 2 square degree equatorial field with imaging by most of the major space-based telescopes (Hubble, Spitzer, GALEX, XMM, Chandra) and a number of large ground based telescopes (Subaru, VLA, ESO-VLT, UKIRT, NOAO, CFHT, and others). Over 2 million galaxies are detected, spanning 75% of the age of the universe.These VLA data represent the additional 62 hrs of 1.4 GHz (20cm) observations of the central 7 pointings already imaged by the large project in A-configuration in February/March 2006. The observations have been combined with the large project in which the 2 square degree COSMOS field with the position given above as the center of the field was surveyed for 275 hours. The observations of the large project were performed at 1.4 GHz (20 cm), using the VLA in its A- and C-configuration between September 2004 and September 2005. The final combined survey has reached a sensitivity of an rms of uJy/beam in the central 30' at a resolution of 2.5"x2.5".
VLA A2390 Cluster of Galaxies 1.4-GHz Source Catalog
공공데이터포털
This table contains the 1.4-GHz source catalog for the field of the cluster of galaxies A2390 as observed with the Very Large Array (VLA). This is one of the deepest radio images of a cluster field ever taken. The image covers an area of 34' x 34' with a synthesized beam of ~1.4" and a noise level of ~5.6 µJy (µJy) near the field center. In the reference paper, the authors construct differential number counts for the central regions (radius < 16') of this cluster, and find that the faint (S1.4GHz < 3 mJy) counts of A2390 are roughly consistent with the lowest blank field number counts. Their analyses indicate that the number counts are primarily from field radio galaxies. The authors suggest that the disagreement of their number counts for this cluster with those from a similarly deep observation of A370 that was also presented in the reference paper can be largely attributed to cosmic variance. The authors observed the A2390 cluster field with the VLA in the A configuration for ~31.4hr on-source during 2008 October. The field center is located at 21:53:36 +17:41:52 (J2000). This table was created by the HEASARC in August 2017 based on CDS Catalog J/ApJS/202/2/ file table2.dat. This file contained 699 entries for sources detected at 1.4 GHz in the A370 field, as well as 524 entries for sources detected at 1.4 GHz in the A2390 field. Only the latter are included in this HEASARC table, while the former can be found in the HEASARC's VLA3701P4 table. This is a service provided by NASA HEASARC .
9C 15-GHz Ryle Telescope Survey of VSA Fields Source Catalog
공공데이터포털
The fields chosen for the first observations of the cosmic microwave background (CMB) with the Very Small Array (VSA) have been surveyed with the Ryle Telescope at 15 GHz. The authors have covered three regions around RA = 00h20m and Dec = +30o, RA = 09h40m and Dec = +32o and RA = 15h40m and Dec = +43o (J2000.0), comprising an area of 520 deg2. There are 465 sources in this entire area which are above the estimated completeness limit of ~ 25 mJy, although a total of ~ 760 sources were detected, some as faint as 10 mJy. The prime motivation of this study was to define a catalog of the foreground sources that must be monitored by the VSA during its observations at 34 GHz. In particular, it provides a means of identifying GigaHertz peaked spectrum (GPS) sources, which are important for the study of radio source evolution, as well as being a significant foreground for CMB observations over a range of wavelengths. Since this will be a new and quite extensive survey, it was desgignated as '9C' or the Ninth Cambridge survey. For the purpose of this particular component of the 9C survey, the authors designated as a subset, 3 circular areas, VSA1, VSA2 and VSA3, defined by the properties listed in Table 2 of the reference paper and reproduced below:
 Field Centre J2000.0 Center B1950.0 Radius Area RA Dec RA Dec (degrees) (sq. degrees) VSA1 00 17 36.5 +30 16 39 00 15 00.0 +30 00 00 5.5 95.0 VSA2 09 40 57.7 +31 46 21 09 38 00.0 +32 00 00 6.0 113.0 VSA3 15 36 42.7 +43 20 11 15 35 00.0 +43 30 00 5.0 78.5 
There are 242 sources which were both above the 25 mJy completeness limit and were in the 286.5 deg2 contained within these 3 circular fields. These source were listed in 3 tables in the reference paper, Table 4 (VSA1), Table 5 (VSA2) and Table 6 (VSA3). These have been combined into this one HEASARC table, in which the HEASARC added a new parameter vsa_field, which is set to 1 for the VSA1 sources, 2 for the VSA2 sources, and 3 for the VSA3 sources. This table was created in November 2010 based on
CDS catalog J/MNRAS/342/915 files table4.dat, table5.dat and table6.dat. This is a service provided by NASA HEASARC .
VLA A370 Cluster of Galaxies 1.4-GHz Source Catalog
공공데이터포털
This table contains the 1.4-GHz source catalog for the field of the cluster of galaxies A370 as observed with the Very Large Array (VLA). This is one of the deepest radio images of a cluster field ever taken. The image covers an area of 40' x 40' with a synthesized beam of ~1.7" and a noise level of ~5.7 µJy (µJy) near the field center. The authors have cataloged 200 redshifts for the A370 field. In the reference paper, they construct differential number counts for the central regions (radius < 16') of this cluster, and find that the faint (S1.4GHz < 3 mJy) counts of A370 are roughly consistent with the highest blank field number counts. Their analyses indicate that the number counts are primarily from field radio galaxies. The authors suggest that the disagreement of their number counts for this cluster with those from a similarly deep observation of A2390 that was also presented in the reference paper can be largely attributed to cosmic variance. The authors observed the A370 cluster field with the VLA in the A configuration for ~42.4hr on-source during 1999 August and September. K. S. Dwarakanath observed A370 in the B configuration for ~18.4hr on-source during 1994 August and September. The field center is located at 02:39:32 -01:35:07 (J2000). This is offset by approximately 5 arcminutes from the cluster center at 02:39:50.5 -01:35:08. The authors also targeted 58 radio sources, in A370, that had no existing optical spectral data using the Hydra fiber spectrograph on the Wisconsin-Indiana-Yale-NOAO (WIYN) telescope (spectral window of ~4500 - 9500 Angstrom). They preferentially targeted optically bright galaxies, obtaining these data in a single two-hour pointing on 2012 January 20. Of the 58 targets, the authors obtained high-confidence redshifts for 36. This table was created by the HEASARC in August 2017 based on CDS Catalog J/ApJS/202/2/ file table2.dat. This file contained 699 entries for sources detected at 1.4 GHz in the A370 field, as well as 524 entries for sources detected at 1.4 GHz in the A2390 field. Only the former are included in this HEASARC table, while the latter can be found in the HEASARC's VLA23901P4 table. This is a service provided by NASA HEASARC .
COSMOS Field VLBA Observations 1.4-GHz Source Catalog
공공데이터포털
This table contains the results of a project using wide-field Very Long Baseline Interferometry (VLBI) observations at 1.4 GHz of 2,865 known radio sources in the Cosmic Evolution Survey (COSMOS) field, a field which has exceptional multi-wavelength coverage. The main objective of this study is to identify the active galactic nuclei (AGN) in this field. Wide-field VLBI observations were made of all known radio sources in the COSMOS field at 1.4 GHz using the Very Long Baseline Array (VLBA). The authors also collected complementary multiwavelength information from the literature for the VLBA-detected sources.The combination of the number of sources, sensitivity, angular resolution and the area covered by this project are unprecedented. A catalog which contains the VLBI-detected sources is presented, the main purpose of which is to be used as an AGN catalog. the complementary multiwavelength (optical, infrared and X-ray) information of the VLBI-detected sources is also presented. The authors have detected 468 radio sources, expected to be AGN, with the VLBA. This is, to date, the largest sample assembled of VLBI-detected sources in the sub-mJy regime. They find a detection fraction of 20% +/- 1%, considering only those sources from the input catalog which were in principle detectable with the VLBA (2,361). As a function of the VLA flux density, the detection fraction is higher for higher flux densities, since at high flux densities a source could be detected even if the VLBI core accounts for a small percentage of the total flux density. As a function of redshift, the authors see no evolution of the detection fraction over the redshift range 0.5 < z < 3. In addition, they find that faint radio sources typically have a greater fraction of their radio luminosity in a compact core: ~70% of the sub-mJy sources detected with the VLBA have more than half of their total radio luminosity in a VLBI-scale component, whereas this is true for only ~30% of the sources that are brighter than 10 mJy. This suggests that fainter radio sources differ intrinsically from brighter ones. Across the entire sample, the authors find the predominant morphological classification of the host galaxies of the VLBA-detected sources to be early type (57%), although this varies with redshift and at z > 1.5 they find that spiral galaxies become the most prevalent (48%). The number of detections is high enough to study the faint radio population with statistically significant numbers. The authors demonstrate that wide-field VLBI observations, together with new calibration methods such as multi-source self-calibration and mosaicking, result in information which is difficult or impossible to obtain otherwise. This table contains 504 entries, including the 468 VLBA-detected sources and, for sources with multiple components, entries for the individual components. Among the detected sources, there are 452 single, 13 double, 2 triple and 1 quadruple source. Source entries have no suffix in their vlba_source_id, e.g., 'C3293', whereas component entries have a, b, c or d suffixes, e.g., 'C0090a' (and a value of 2 for the multi_cpt_flag parameter). This table was created by the HEASARC in December 2017 based on CDS Catalog J/A+A/607/A132 files vlba_cat.dat and vlba_mw.dat. This is a service provided by NASA HEASARC .