데이터셋 상세
미국
Shotpoint navigation at a 500-shot interval for chirp seismic-reflection data collected in 2012 by the U.S. Geological Survey in the Connecticut River during field activity 2012-024-FA (Point Shapefile)
A geophysical and geological survey was conducted at the mouth of the Connecticut River from Old Saybrook to Essex, Connecticut, in September 2012. Approximately 230 linear kilometers of digital Chirp subbottom (seismic-reflection) and 234-kilohertz interferometric sonar (bathymetric and backscatter) data were collected along with sediment samples, riverbed photographs, and (or) video at 88 sites within the geophysical survey area. Sediment grab samples were collected at 72 of the 88 sampling sites, video was acquired at 68 sites, and photographs of the river bottom were taken at 38 sites. These survey data are used to characterize the riverbed by identifying sediment-texture and riverbed morphology. More information can be found on the web page for the Woods Hole Coastal and Marine Science Center field activity: https://cmgds.marine.usgs.gov/fan_info.php?fan=2012-024-FA. Data collected during the 2012 survey can be obtained here: https://doi.org/10.5066/F7PG1Q7V.
데이터 정보
연관 데이터
Shot-point calibrated trackline navigation for chirp seismic data collected in Indian River Bay, Delaware, on April 13, 2010, on U.S. Geological Survey Field Activity 2010-006-FA (IR ROUTES CALIB.SHP, Geographic, WGS 84)
공공데이터포털
A geophysical survey to delineate the fresh-saline groundwater interface and associated sub-bottom sedimentary structures beneath Indian River Bay, Delaware, was carried out in April 2010. This included surveying at higher spatial resolution in the vicinity of a study site at Holts Landing, where intensive onshore and offshore studies were subsequently completed. The total length of continuous resistivity profiling (CRP) survey lines was 145 kilometers (km), with 36 km of chirp seismic lines surveyed around the perimeter of the bay. Medium-resolution CRP surveying was performed using a 50-meter streamer in a bay-wide grid. Results of the surveying and data inversion showed the presence of many buried paleochannels beneath Indian River Bay that generally extended perpendicular from the shoreline in areas of modern tributaries, tidal creeks, and marshes. An especially wide and deep paleochannel system was imaged in the southeastern part of the bay near White Creek. Many paleochannels also had high-resistivity anomalies corresponding to low-salinity groundwater plumes associated with them, likely due to the presence of fine-grained estuarine mud and peats in the channel fills that act as submarine confining units. Where present, these units allow plumes of low-salinity groundwater that was recharged onshore to move beyond the shoreline, creating a complex fresh-saline groundwater interface in the subsurface. The properties of this interface are important considerations in construction of accurate coastal groundwater flow models. These models are required to help predict how nutrient-rich groundwater, recharged in agricultural watersheds such as this one, makes its way into coastal bays and impacts surface water quality and estuarine ecosystems. For more information on the survey conducted for this project, see https://cmgds.marine.usgs.gov/fan_info.php?fan=2010-006-FA.
Shotpoint navigation at a 500-shot interval for chirp seismic-reflection data collected in 2016 by the U.S. Geological Survey off Town Neck Beach in Sandwich, Massachusetts, during field activity 2016-017-FA (point shapefile)
공공데이터포털
A geophysical and geological survey was conducted at the mouth of the Connecticut River from Old Saybrook to Essex, Connecticut, in September 2012. Approximately 230 linear kilometers of digital Chirp subbottom (seismic-reflection) and 234-kilohertz interferometric sonar (bathymetric and backscatter) data were collected along with sediment samples, riverbed photographs, and (or) video at 88 sites within the geophysical survey area. Sediment grab samples were collected at 72 of the 88 sampling sites, video was acquired at 68 sites, and photographs of the river bottom were taken at 38 sites. These survey data are used to characterize the riverbed by identifying sediment-texture and riverbed morphology. More information can be found on the web page for the Woods Hole Coastal and Marine Science Center field activity: https://cmgds.marine.usgs.gov/fan_info.php?fan=2012-024-FA. Data collected during the 2012 survey can be obtained here: https://doi.org/10.5066/F7PG1Q7V.
Shot point navigation at even 500 shot intervals for EdgeTech SB-512i chirp seismic-reflection data collected by the U.S. Geological Survey offshore of Massachusetts within Vineyard Sound by the U.S. Geological Survey in 2009, 2010, and 2011 (VS SeismicShot 500, ESRI Point Shapefile, Geographic, WGS84).
공공데이터포털
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine resources, and assessing environmental changes due to natural or human impacts. The project is focused on the inshore waters of coastal Massachusetts, primarily in water depths of 3-30 meters deep. Data collected for the mapping cooperative have been released in a series of USGS Open-File Reports (http://woodshole.er.usgs.gov/project-pages/coastal_mass/). The data collected in the study area located in Vineyard Sound, Massachusetts includes high-resolution geophysics (bathymetry, backscatter intensity, and seismic reflection), and ground validation (sediment samples, video tracklines, and bottom photographs). The data were collected during three separate surveys conducted between 2009 and 2011 (USGS-WHSC surveys 2009-002-FA, 2010-004-FA, and 2011-004-FA) and cover 340 square kilometers of the inner continental shelf. More information about the individual USGS surveys conducted as part of the Vineyard Sound project can be found on Woods Hole Coastal and Marine Science Center Field Activity webpages: 2009-002-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2009-002-FA 2010-004-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2010-004-FA 2011-004-FA: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2011-004-FA
Shotpoint navigation (100 shot interval) for CHIRP seismic data collected during USGS cruise GYRE 99002 (L1 5SP100G.SHP)
공공데이터포털
This GIS overlay is a component of the U.S. Geological Survey, Woods Hole Science Center's, Gulf of Mexico GIS database. The Gulf of Mexico GIS database is intended to organize and display USGS held data and provide on-line (WWW) access to the data and/or metadata. A two week cruise aboard the R/V GYRE focused on mapping surficial sedimentary processes and their connection to the subsurface geology. The study area was on the upper continental slope in the northwestern Gulf of Mexico; an area of active hydrocarbon exploration. Active salt movement, hydrocarbon movement up faults, the presence of gas hydrates associated with biogenic and thermogenic methane, and overpressured sand deposits all present hazards to oil exploration in this area. This study used sidescan sonar and high-resolution chirp subbottom profiling techniques to map the surficial and shallow subsurface expression of these processes in two areas roughly 15 by 25 km in size. High-resolution multi-channel seismic-reflection data were collected simultaneously with the sidescan imagery to provide a link to the deeper subsurface. Additional multi-channel and Huntec seismic data were collected along regional lines between the detailed study areas to tie these studies to other areas of known hydrates and to wells where shallow overpressured sands have been drilled. The detailed studies attempted to map entire geological systems in this upper slope environment to provide a broader perspective than can be seen from studying a single lease block. One study area focused on two adjacent salt withdrawal basins to assess the processes that are shaping the flanks of the basins, the processes affecting sedimentation in the basin floors, and to compare the deeper structures and surficial processes between the basins. The second study area focused on three salt domes, the processes associated with them, and how they affect the shallow subsurface stratigraphy. Initial observations suggest that most of the surface and shallow subsurface geohazards are associated with the flanks of salt structures. Here active salt movement generates faults along which hydrocarbons can escape to the seafloor, and tectonic oversteepenning generates slope failures.
Shotpoint navigation at a 500-shot interval for chirp seismic-reflection data collected south of Martha's Vineyard and north of Nantucket by the U.S. Geological Survey during field activity 2013-003-FA offshore of Massachusetts in 2013 (2013-003-FA 512i shot500, Esri Point Shapefile, Geographic, WGS84)
공공데이터포털
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea floor geology are important first steps toward protecting fish habitat, delineating marine resources, and assessing environmental changes due to natural or human impacts. The project is focused on the inshore waters of coastal Massachusetts, primarily in water depths of 5 to 30 meters (m) deep. Data collected for the mapping cooperative have been released in a series of USGS Open-File Reports (http://woodshole.er.usgs.gov/project-pages/coastal_mass/). The geophysical data were collected during a survey in 2013 during USGS Field Activity 2013-003-FA (http://cmgds.marine.usgs.gov/fan_info.php?fa=2013-003-FA) and cover approximately 185 square kilometers of the inner continental shelf.
Shot point navigation at 100 shot intervals for EdgeTech SB-512i chirp seismic-reflection data collected in May 2012 by the U.S. Geological Survey within the Norfolk Canyon, mid-Atlantic margin (Esri point shapefile, Geographic, WGS 84, NC all100shot.shp)
공공데이터포털
A large number of high-resolution geophysical surveys between Cape Hatteras and Georges Bank have been conducted by federal, state, and academic institutions since the turn of the century. A major goal of these surveys is providing a continuous view of bathymetry and shallow stratigraphy at the shelf edge in order to assess levels of geological activity during the current sea level highstand. In 2012, chirp seismic-reflection data was collected by the U.S. Geologial Survey aboard the motor vessel Tiki XIV near three United States mid-Atlantic margin submarine canyons. These data can be used to further our understanding of passive continental margin processes during the Holocene, as well as providing valuable information regarding potential submarine geohazards. For more information on the U.S. Geological Survey involvement in this effort, see https://cmgds.marine.usgs.gov/fan_info.php?fan=2012-005-FA.
Point shapefile (100 shot interval) of navigation for chirp seismic data collected in the Indian River Bay, Delaware, on April 13, 2010, on U.S. Geological Survey Field Activity 2010-006-FA (IR 100SHOT SORT.SHP, Geographic, WGS 84)
공공데이터포털
A geophysical survey to delineate the fresh-saline groundwater interface and associated sub-bottom sedimentary structures beneath Indian River Bay, Delaware, was carried out in April 2010. This included surveying at higher spatial resolution in the vicinity of a study site at Holts Landing, where intensive onshore and offshore studies were subsequently completed. The total length of continuous resistivity profiling (CRP) survey lines was 145 kilometers (km), with 36 km of chirp seismic lines surveyed around the perimeter of the bay. Medium-resolution CRP surveying was performed using a 50-meter streamer in a bay-wide grid. Results of the surveying and data inversion showed the presence of many buried paleochannels beneath Indian River Bay that generally extended perpendicular from the shoreline in areas of modern tributaries, tidal creeks, and marshes. An especially wide and deep paleochannel system was imaged in the southeastern part of the bay near White Creek. Many paleochannels also had high-resistivity anomalies corresponding to low-salinity groundwater plumes associated with them, likely due to the presence of fine-grained estuarine mud and peats in the channel fills that act as submarine confining units. Where present, these units allow plumes of low-salinity groundwater that was recharged onshore to move beyond the shoreline, creating a complex fresh-saline groundwater interface in the subsurface. The properties of this interface are important considerations in construction of accurate coastal groundwater flow models. These models are required to help predict how nutrient-rich groundwater, recharged in agricultural watersheds such as this one, makes its way into coastal bays and impacts surface water quality and estuarine ecosystems. For more information on the survey conducted for this project, see https://cmgds.marine.usgs.gov/fan_info.php?fan=2010-006-FA.