데이터셋 상세
미국
Aerial surveys of bowhead and beluga whales along with incidental sighting of other marine mammals in the Bering, Beaufort and Chukchi Seas for the Bowhead Whale Aerial Survey Project (BWASP), 1979 - 2004 (NCEI Accession 0001941)
The Minerals Management Service (MMS), previously Bureau of Land Management, has funded fall bowhead whale aerial surveys in this area each year since 1978, using a repeatable protocol from 1982 to the present. Bowhead monitoring by MMS Environmental Studies Section, Alaska Outer Continental Shelf (OCS) Region, normally overlaps the September-October "open-water" season when offshore drilling and geophysical exploration are feasible and when the fall subsistence hunt for bowhead whales takes place near Kaktovik, Nuiqsut, and Barrow, Alaska. The primary survey aircraft was a de Havilland Twin Otter Series 300. The aircraft was equipped with three medium-size bubble windows that afforded complete viewing of the track-line. Geographic positions of the aircraft were logged onto a laptop computer from a Global Navigation System (1982-1991) or a Global Positioning System (1992-2000). Prior to 1992, many surveys in Block 12 (See Browse Graphic) were conducted from a Grumman Turbo Goose Model G21G. All bowhead (and beluga) whales observed were recorded, along with incidental sightings of other marine mammals. Particular emphasis was placed on regional surveys to assess large-area shifts in the migration pathway of bowhead whales and on the coordination of effort and management of data necessary to support seasonal offshore-drilling and seismic-exploration regulations. The selection of survey blocks to be flown on a given day was nonrandom, based primarily on criteria such as observed and predicted weather conditions over the study area and offshore oil-industry activities. Otherwise, the project attempted to distribute effort fairly evenly east-to-west across the entire study area. Aerial coverage favored inshore survey blocks (See Browse Graphic), since bowheads were rarely sighted north of these blocks in previous surveys (1979-1986). Surveys were flown at a target altitude of 458 m in order to maximize visibility and to minimize potential disturbance to marine mammals. Flights were normally aborted when cloud ceilings were consistently less than 305 m or the wind force was consistently above Beaufort 4. Daily flight patterns were based on sets of non-repeating transect grids computer-generated for each survey block. Transect grids were derived by dividing each survey block into sections 30 minutes of longitude across. One of the minute marks along the northern edge of each section was selected at random then connected by a straight line to a similarly selected endpoint along the southern edge of that same section. This procedure was followed for all sections of that survey block. These transect legs were then connected alternately at their northernmost or southernmost ends to produce one continuous flight grid within each survey block. Gridlines were occasionally lengthened to cover both an inshore block and the block north of it. Lines were occasionally truncated due to extended poor visibility or to avoid potential interference with subsistence whaling activities. For bowheads encountered "on transect", the aircraft sometimes circled for a brief (< 10 min) period to observe behavior, obtain better estimates of their numbers, and/or determine whether calves were present. Any new groups sighted when circling were recorded as "on search".
데이터 정보
연관 데이터
Aerial sightings of bowhead whales and other marine mammals by the US Department of the Interior's Minerals Management Service, 1979 - 2006, in the Bering, Chukchi and Beaufort Seas (NCEI Accession 0014906)
공공데이터포털
The Minerals Management Service (MMS), previously Bureau of Land Management, has funded fall bowhead whale aerial surveys in this area each year since 1978, using a repeatable protocol from 1982 to the present. Bowhead monitoring by MMS Environmental Studies Section, Alaska Outer Continental Shelf (OCS) Region, normally overlaps the September-October "open-water" season when offshore drilling and geophysical exploration are feasible and when the fall subsistence hunt for bowhead whales takes place near Kaktovik, Nuiqsut, and Barrow, Alaska. The primary survey aircraft was a de Havilland Twin Otter Series 300. The aircraft was equipped with three medium-size bubble windows that afforded complete viewing of the track-line. Geographic positions of the aircraft were logged onto a laptop computer from a Global Navigation System (1982-1991) or a Global Positioning System (1992-2000). Prior to 1992, many surveys in Block 12 (See Browse Graphic) were conducted from a Grumman Turbo Goose Model G21G. All bowhead (and beluga) whales observed were recorded, along with incidental sightings of other marine mammals. Particular emphasis was placed on regional surveys to assess large-area shifts in the migration pathway of bowhead whales and on the coordination of effort and management of data necessary to support seasonal offshore-drilling and seismic-exploration regulations. The selection of survey blocks to be flown on a given day was nonrandom, based primarily on criteria such as observed and predicted weather conditions over the study area and offshore oil-industry activities. Otherwise, the project attempted to distribute effort fairly evenly east-to-west across the entire study area. Aerial coverage favored inshore survey blocks (See Browse Graphic), since bowheads were rarely sighted north of these blocks in previous surveys (1979-1986). Surveys were flown at a target altitude of 458 m in order to maximize visibility and to minimize potential disturbance to marine mammals. Flights were normally aborted when cloud ceilings were consistently less than 305 m or the wind force was consistently above Beaufort 4. Daily flight patterns were based on sets of non-repeating transect grids computer-generated for each survey block. Transect grids were derived by dividing each survey block into sections 30 minutes of longitude across. One of the minute marks along the northern edge of each section was selected at random then connected by a straight line to a similarly selected endpoint along the southern edge of that same section. This procedure was followed for all sections of that survey block. These transect legs were then connected alternately at their northernmost or southernmost ends to produce one continuous flight grid within each survey block. Gridlines were occasionally lengthened to cover both an inshore block and the block north of it. Lines were occasionally truncated due to extended poor visibility or to avoid potential interference with subsistence whaling activities. For bowheads encountered "on transect", the aircraft sometimes circled for a brief (< 10 min) period to observe behavior, obtain better estimates of their numbers, and/or determine whether calves were present. Any new groups sighted when circling were recorded as "on search".
Periodic bowhead whale aerial surveys by the USDI/Minerals Management Service in the Bering, Chukchi and Beaufort Seas, 1979-04 to 2001-10 (NCEI Accession 0001139)
공공데이터포털
The Minerals Management Service (MMS), previously Bureau of Land Management, has funded fall bowhead whale aerial surveys in this area each year since 1978, using a repeatable protocol from 1982 to the present. Bowhead monitoring by MMS Environmental Studies Section, Alaska Outer Continental Shelf (OCS) Region, normally overlaps the September-October "open-water" season when offshore drilling and geophysical exploration are feasible and when the fall subsistence hunt for bowhead whales takes place near Kaktovik, Nuiqsut, and Barrow, Alaska. The primary survey aircraft was a de Havilland Twin Otter Series 300. The aircraft was equipped with three medium-size bubble windows that afforded complete viewing of the track-line. Geographic positions of the aircraft were logged onto a laptop computer from a Global Navigation System (1982-1991) or a Global Positioning System (1992-2000). Prior to 1992, many surveys in Block 12 (See Browse Graphic) were conducted from a Grumman Turbo Goose Model G21G. All bowhead (and beluga) whales observed were recorded, along with incidental sightings of other marine mammals. Particular emphasis was placed on regional surveys to assess large-area shifts in the migration pathway of bowhead whales and on the coordination of effort and management of data necessary to support seasonal offshore-drilling and seismic-exploration regulations. The selection of survey blocks to be flown on a given day was nonrandom, based primarily on criteria such as observed and predicted weather conditions over the study area and offshore oil-industry activities. Otherwise, the project attempted to distribute effort fairly evenly east-to-west across the entire study area. Aerial coverage favored inshore survey blocks (See Browse Graphic), since bowheads were rarely sighted north of these blocks in previous surveys (1979-1986). Surveys were flown at a target altitude of 458 m in order to maximize visibility and to minimize potential disturbance to marine mammals. Flights were normally aborted when cloud ceilings were consistently less than 305 m or the wind force was consistently above Beaufort 4. Daily flight patterns were based on sets of non-repeating transect grids computer-generated for each survey block. Transect grids were derived by dividing each survey block into sections 30 minutes of longitude across. One of the minute marks along the northern edge of each section was selected at random then connected by a straight line to a similarly selected endpoint along the southern edge of that same section. This procedure was followed for all sections of that survey block. These transect legs were then connected alternately at their northernmost or southernmost ends to produce one continuous flight grid within each survey block. Gridlines were occasionally lengthened to cover both an inshore block and the block north of it. Lines were occasionally truncated due to extended poor visibility or to avoid potential interference with subsistence whaling activities. For bowheads encountered "on transect", the aircraft sometimes circled for a brief (< 10 min) period to observe behavior, obtain better estimates of their numbers, and/or determine whether calves were present. Any new groups sighted when circling were recorded as "on search".
Bowhead whale aerial abundance survey conducted by Alaska Fisheries Science Center, National Marine Mammal Laboratory from 2011-04-19 to 2011-06-11 (NCEI Accession 0133937)
공공데이터포털
Aerial photographic surveys for bowhead whales were conducted near Point Barrow, Alaska, from 19 April to 6 June in 2011. Approximately 4,594 photographs containing 6,801 bowhead whale images were obtained (not accounting for resightings). The 2011 field season was very successful: we flew 36 out of 49 available days and conducted 49 flights in that time; we were grounded due to weather on 13 days. The longest period of time that we were grounded due to weather (low ceilings/fog) was three days. This occurred after the migration had slowed down, during a time when few whales passed the ice perches according to the ice-based visual survey. The 2011 migration was steady with several peaks (30 April, 4-5 May, 12 May), and then the migration rate slowed down considerably after 14 May. The photographs taken in 2011 are a significant contribution to the bowhead whale photographic catalogue. They will be used to calculate a population estimate that may be used for comparison with the 2011 ice-based estimate and will provide better precision in estimates of bowhead whale life-history parameters.
Bowhead Whale Feeding Ecology Study (BOWFEST): Aerial Survey in Chukchi and Beaufort Seas conducted from 2007-08-23 to 2011-09-16 (NCEI Accession 0131425)
공공데이터포털
The Bowhead Whale Feeding Ecology Study (BOWFEST) was initiated in May 2007 through an Interagency Agreement between the Bureau of Ocean Energy Management (BOEM) (formerly Minerals Management Service (MMS)) and the National Marine Mammal Laboratory (NMML). This was a multi-disciplinary study involving oceanography, acoustics, tagging, stomach sampling and aerial surveys and included scientists from a wide range of institutions (Woods Hole Oceanographic Institution (WHOI), University of Rhode Island (URI), University of Alaska Fairbanks (UAF), University of Washington (UW), Oregon State University (OSU), North Slope Borough (NSB), and NMML. The data described and presented here are only from the aerial survey component of this larger study. The focus of the aerial survey was to document patterns and variability in the timing and locations of bowhead whales. Using a NOAA Twin Otter, scientists from NMML conducted aerial surveys from mid-August to mid-September during this five year study between years 2007-2011. Surveys were conducted in the BOWFEST study area (continental shelf waters between 157 degree W and 152 degree W and from the coastline to 72 degree N, with most of the effort concentrated between 157 degree W and 154 degree W and between the coastline and 71 degree 44'N).
Beluga whale (Delphinapterus leucas) presence and survey effort collected during visual surveys from aerial platforms by the Alaska Beluga Whale Committee in the Eastern Bering Sea from 1992-05-27 to 2000-06-20 (NCEI Accession 0276222)
공공데이터포털
During the years 1992-1995 and 1999-2000, the National Oceanic and Atmospheric Administration provided funds for the Alaska Beluga Whale Committee (ABWC) to conduct studies of belugas in Alaska. Part of the ABWC research program consisted of aerial surveys of western Alaska beluga stocks, including the Eastern Bering Sea (EBS) stock. In 1992, several aerial surveys were conducted during three periods: 27-29 May, 17-21 June, and 18-22 September to assess the distribution of belugas during those periods. The surveys found relatively few belugas in May and September, but a large number of belugas in June. Based on those results, surveys in subsequent years were conducted only in June: 14-18 June 1993, 11-16 June 1994, 5-8 and 20-22 June 1995, 15-17 June 1999, and 17-20 June 2000. This dataset contains aerial survey data from the surveys described above.