데이터셋 상세
미국
Understanding Constraints on Geothermal Sustainability Through Reservoir Characterization at Brady Geothermal Field, Nevada
The vast supply of geothermal energy stored throughout the Earth and the exceedingly long time required to dissipate that energy makes the world's geothermal energy supply nearly limitless. As such, this resource holds the potential to provide a large supply of the world's energy demands; however, like all natural resources, it must be utilized in an appropriate manner if it is to be sustainable. Understanding sustainable use of geothermal resources requires thorough characterization efforts aimed at better understanding subsurface properties. The goal of this work is to understand which critical subsurface properties exert the most influence on sustainable geothermal production as a means to provide targeted future resource characterization strategies. Borehole temperature and reservoir pressure data were analyzed to estimate reservoir thermal and hydraulic properties at an active geothermal site. These reservoir properties then served as inputs for an analytical model which simulated net power production over a 30-year period. The analytical model was used to conduct a sensitivity analysis to determine which parameters were most critical in constraining the sustainability of a geothermal reservoir. Modeling results reveal that the number of preferential flow pathways (i.e. fractures) used for heat transport provides the greatest impact on geothermal reservoir sustainability. These results suggest that early and pre-production geothermal reservoir exploration would achieve the greatest benefit from characterization strategies which seek to delineate the number of active flow pathways present in the system.
데이터 정보
연관 데이터
3-D Geologic Controls of Hydrothermal Fluid Flow at Brady Geothermal Field, Nevada using PCA
공공데이터포털
In many hydrothermal systems, fracture permeability along faults provides pathways for groundwater to transport heat from depth. Faulting generates a range of deformation styles that cross-cut heterogeneous geology, resulting in complex patterns of permeability, porosity, and hydraulic conductivity. Vertical connectivity (a through going network of permeable areas that allows advection of heat from depth to the shallow subsurface) is rare and is confined to relatively small volumes that have highly variable spatial distribution. This local compartmentalization of connectivity represents a significant challenge to understanding hydrothermal circulation and for exploring, developing, and managing hydrothermal resources. Here, we present an evaluation of the geologic characteristics that control this compartmentalization in hydrothermal systems through 3-D analysis of the Brady geothermal field in western Nevada. A published 3-D geologic map of the Brady area is used as a basis to develop structural and geological variables that are hypothesized to control or effect permeability or connectivity. The 3-D distribution of these variables is compared to the distribution of productive and non-productive fluid flow intervals along production wells and non-productive wells via principal component analysis (PCA). This comparison elucidates which geologic and structural variables are most closely associated with productive fluid flow intervals. Results indicate that production intervals at Brady are located: (1) within or near to known and stress-loaded macro-scale faults, and (2) in areas of high fault and fracture density. This submission includes the published journal article detailing this work, the published 3-D geologic map of the Brady Geothermal Area used as a basis to develop structural and geological variables that are hypothesized to control or effect permeability or connectivity, 3-D well data, along which geologic data were sampled for PCA analyses, and associated metadata file. This work was done using existing R programs.
Brady's Geothermal Field - Analysis of Pressure Data
공공데이터포털
*This submission provides corrections to GDR Submissions 844 and 845* Poroelastic Tomography (PoroTomo) by Adjoint Inverse Modeling of Data from Hydrology. The 3 *csv files containing pressure data are the corrected versions of the pressure dataset found in Submission 844. The dataset has been corrected in the sense that the atmospheric pressure has been subtracted from the total pressure measured in the well. Also, the transducers used at wells 56A-1 and SP-2 are sensitive to surface temperature fluctuations. These temperature effects have been removed from the corrected datasets. The 4th *csv file contains corrected version of the pumping data found in Submission 845. The data has been corrected in the sense that the data from several wells that were used during the PoroTomo deployment pumping tests that were not included in the original dataset has been added. In addition, several other minor changes have been made to the pumping records due to flow rate instrument calibration issues that were discovered.
Hawthorne Nevada Deep Direct-Use Feasibility Study - Data Used for Geothermal Resource Conceptual Modeling and Power Capacity Estimates
공공데이터포털
This data submission includes several data components that were used to develop a conceptual model and power capacity-estimates of two low-temperature geothermal resources that define geothermal prospect A at Hawthorne, Nevada. Data are sourced from a combination of legacy publicly-available data and more recent data acquisition conducted by the US Navy Geothermal Program Office (2008-2013) and the Great Basin Center for Geothermal Energy at the University of Nevada, Reno (2008-2010). Data sets include compiled fluid geochemistry data, down-hole temperature logs for wells in the vicinity of prospect A, 2 meter temperature survey data, temperature-spinner logs acquired in well HWAAD-2A, fracture picks from image log data acquired in wells HWAAD-2 and HWAAD-3, and X-Ray Diffraction (XRD) analyses on cuttings from wells HWAAD-2A and HWAAD-3. These data have been reviewed for errors and inconsistencies, but it is possible that few errors could still remain. The resource conceptual model and power capacity estimates are included in the final report to the US Department of Energy, and are presented in a manuscript by Ayling and Hinz. A link to the manuscript published in Geothermics is linked below in this submission.
Brady Geothermal Field Borehole Pressure Data
공공데이터포털
This submission supersedes pressure data from March 2017 which can be found as a link in the submission resources. This submission contains 3 .csv files with time series pressure data in 3 observation wells at Brady Geothermal Field as part of the PoroTomo project. These pressure files correct a time stamp issue that was in older data which did not correct for daylight savings time which occurred 13 Mar 2016 at 0900 UTC. The data here provides borehole pressures at different temperatures and times. The timeframe each resource was taken in varies between each resource and can be found in the resource descriptions.