데이터셋 상세
미국
Tropical Ozone Transport Experiment – Vortex Ozone Transport Experiment (TOTE-VOTE) DC-8 Remotely Sensed Differential Absorption Lidar (DIAL) Data
TOTE-VOTE_AircraftRemoteSensing_DC8_DIAL_Data_1 is the remotely sensed Differential Absorption Lidar (DIAL) data collected onboard the DC-8 aircraft during the Tropical Ozone Transport Experiment – Vortex Ozone Transport Experiment (TOTE-VOTE) campaign. Data collection is complete.The Tropical Ozone Transport Experiment – Vortex Ozone Transport Experiment (TOTE-VOTE) campaign was conducted by NASA from December 1995 to February 1996. TOTE-VOTE took place in the Pacific region with the goal of gaining a better understanding of background transport processes from tropical/polar regions to midlatitudes. Nineteen flights were conducted using the NASA DC-8 aircraft and balloon sondes with the purpose of measuring the transport of filaments of air moved in or out of the arctic polar vortex and the tropical stratospheric reservoir. TOTE-VOTE also utilized ground-based instruments along with aircrafts.Various instrumentation was used during TOTE-VOTE in order to achieve the mission objectives. The DC-8 aircraft was equipped with the NCAR NOxyO3 instrument, the NASA Langley Airborne Differential Absorption Lidar (DIAL) system, the Forward Scattering Spectrometer Probe (FSSP), the Microwave Temperature Profiler (MTP), the Multiple-Angle Aerosol Spectrometer Probe (MASP), and the diode laser spectrometer system, historically known as the Differential Absorption Carbon monOxide Measurement (DACOM). The NCAR NOxyO3 is a type of 4-channel chemiluminescence instrument that was used to quantify NOx (NO and NO2), NOy (total reactive nitrogen), and ozone (O3) in the air. The DIAL system used four lasers to make DIAL O3 profiles, along with collecting data on aerosol backscattering, aerosol depolarization ratio, aerosol extinction, and aerosol optical depth. The FSSP is an optical particle counter that measured particle size distribution. The MTP is a passive microwave radiometer that measured natural thermal emissions and was used during TOTE-VOTE to record temperature. The MASP spectrometer collected in-situ measurements of particle concentration, particle size distribution, and particle extinction. Along with the MASP’s in-situ measurements, the DACOM spectrometer utilized three diode lasers at different wavelengths to take in-situ measurements of N2O, CO, CH4, and CO2 for TOTE-VOTE. Ground-based instruments collected lidar data while balloon sondes gathered information on wind direction, wind speed, atmospheric pressure, and air temperature.
연관 데이터
Tropical Ozone Transport Experiment – Vortex Ozone Transport Experiment (TOTE-VOTE) DC-8 Remotely Sensed Lidar Data
공공데이터포털
TOTE-VOTE_AircraftRemoteSensing_DC8_Lidar_Data_1 is the remotely sensed Raman Lidar data collected onboard the DC-8 aircraft during the Tropical Ozone Transport Experiment – Vortex Ozone Transport Experiment (TOTE-VOTE) campaign. Methane and water vapor data are featured in this dataset. Data collection is complete.The Tropical Ozone Transport Experiment – Vortex Ozone Transport Experiment (TOTE-VOTE) campaign was conducted by NASA from December 1995 to February 1996. TOTE-VOTE took place in the Pacific region with the goal of gaining a better understanding of background transport processes from tropical/polar regions to midlatitudes. Nineteen flights were conducted using the NASA DC-8 aircraft and balloon sondes with the purpose of measuring the transport of filaments of air moved in or out of the arctic polar vortex and the tropical stratospheric reservoir. TOTE-VOTE also utilized ground-based instruments along with aircrafts.Various instrumentation was used during TOTE-VOTE in order to achieve the mission objectives. The DC-8 aircraft was equipped with the NCAR NOxyO3 instrument, the NASA Langley Airborne Differential Absorption Lidar (DIAL) system, the Forward Scattering Spectrometer Probe (FSSP), the Microwave Temperature Profiler (MTP), the Multiple-Angle Aerosol Spectrometer Probe (MASP), and the diode laser spectrometer system, historically known as the Differential Absorption Carbon monOxide Measurement (DACOM). The NCAR NOxyO3 is a type of 4-channel chemiluminescence instrument that was used to quantify NOx (NO and NO2), NOy (total reactive nitrogen), and ozone (O3) in the air. The DIAL system used four lasers to make DIAL O3 profiles, along with collecting data on aerosol backscattering, aerosol depolarization ratio, aerosol extinction, and aerosol optical depth. The FSSP is an optical particle counter that measured particle size distribution. The MTP is a passive microwave radiometer that measured natural thermal emissions and was used during TOTE-VOTE to record temperature. The MASP spectrometer collected in-situ measurements of particle concentration, particle size distribution, and particle extinction. Along with the MASP’s in-situ measurements, the DACOM spectrometer utilized three diode lasers at different wavelengths to take in-situ measurements of N2O, CO, CH4, and CO2 for TOTE-VOTE. Ground-based instruments collected lidar data while balloon sondes gathered information on wind direction, wind speed, atmospheric pressure, and air temperature.
Tropical Ozone Transport Experiment – Vortex Ozone Transport Experiment (TOTE-VOTE) DC-8 In Situ Trace Gas Data
공공데이터포털
TOTE-VOTE_TraceGas_AircraftInSitu_DC8_Data_1 is the in situ trace gas data collected onboard the DC-8 aircraft as part of the Tropical Ozone Transport Experiment – Vortex Ozone Transport Experiment (TOTE-VOTE) campaign. Data collected by the DACOM, LICOR, and chemiluminescence are featured in this product. Data collection is completed.The Tropical Ozone Transport Experiment – Vortex Ozone Transport Experiment (TOTE-VOTE) campaign was conducted by NASA from December 1995 to February 1996. TOTE-VOTE took place in the Pacific region with the goal of gaining a better understanding of background transport processes from tropical/polar regions to midlatitudes. Nineteen flights were conducted using the NASA DC-8 aircraft and balloon sondes with the purpose of measuring the transport of filaments of air moved in or out of the arctic polar vortex and the tropical stratospheric reservoir. TOTE-VOTE also utilized ground-based instruments along with aircrafts.Various instrumentation was used during TOTE-VOTE in order to achieve the mission objectives. The DC-8 aircraft was equipped with the NCAR NOxyO3 instrument, the NASA Langley Airborne Differential Absorption Lidar (DIAL) system, the Forward Scattering Spectrometer Probe (FSSP), the Microwave Temperature Profiler (MTP), the Multiple-Angle Aerosol Spectrometer Probe (MASP), and the diode laser spectrometer system, historically known as the Differential Absorption Carbon monOxide Measurement (DACOM). The NCAR NOxyO3 is a type of 4-channel chemiluminescence instrument that was used to quantify NOx (NO and NO2), NOy (total reactive nitrogen), and ozone (O3) in the air. The DIAL system used four lasers to make DIAL O3 profiles, along with collecting data on aerosol backscattering, aerosol depolarization ratio, aerosol extinction, and aerosol optical depth. The FSSP is an optical particle counter that measured particle size distribution. The MTP is a passive microwave radiometer that measured natural thermal emissions and was used during TOTE-VOTE to record temperature. The MASP spectrometer collected in-situ measurements of particle concentration, particle size distribution, and particle extinction. Along with the MASP’s in-situ measurements, the DACOM spectrometer utilized three diode lasers at different wavelengths to take in-situ measurements of N2O, CO, CH4, and CO2 for TOTE-VOTE. Ground-based instruments collected lidar data while balloon sondes gathered information on wind direction, wind speed, atmospheric pressure, and air temperature.
Tropical Ozone Transport Experiment - Vortex Ozone Transport Experiment (TOTE-VOTE) DC-8 Analysis Data
공공데이터포털
TOTE-VOTE_Analysis_DC8_Data_1 is the modeled meteorological data along the flight path for the DC-8 aircraft collected during the Tropical Ozone Transport Experiment – Vortex Ozone Transport Experiment (TOTE-VOTE) campaign. Data collection for this product is complete.The Tropical Ozone Transport Experiment – Vortex Ozone Transport Experiment (TOTE-VOTE) campaign was conducted by NASA from December 1995 to February 1996. TOTE-VOTE took place in the Pacific region with the goal of gaining a better understanding of background transport processes from tropical/polar regions to midlatitudes. Nineteen flights were conducted using the NASA DC-8 aircraft and balloon sondes with the purpose of measuring the transport of filaments of air moved in or out of the arctic polar vortex and the tropical stratospheric reservoir. TOTE-VOTE also utilized ground-based instruments along with aircrafts.Various instrumentation was used during TOTE-VOTE in order to achieve the mission objectives. The DC-8 aircraft was equipped with the NCAR NOxyO3 instrument, the NASA Langley Airborne Differential Absorption Lidar (DIAL) system, the Forward Scattering Spectrometer Probe (FSSP), the Microwave Temperature Profiler (MTP), the Multiple-Angle Aerosol Spectrometer Probe (MASP), and the diode laser spectrometer system, historically known as the Differential Absorption Carbon monOxide Measurement (DACOM). The NCAR NOxyO3 is a type of 4-channel chemiluminescence instrument that was used to quantify NOx (NO and NO2), NOy (total reactive nitrogen), and ozone (O3) in the air. The DIAL system used four lasers to make DIAL O3 profiles, along with collecting data on aerosol backscattering, aerosol depolarization ratio, aerosol extinction, and aerosol optical depth. The FSSP is an optical particle counter that measured particle size distribution. The MTP is a passive microwave radiometer that measured natural thermal emissions and was used during TOTE-VOTE to record temperature. The MASP spectrometer collected in-situ measurements of particle concentration, particle size distribution, and particle extinction. Along with the MASP’s in-situ measurements, the DACOM spectrometer utilized three diode lasers at different wavelengths to take in-situ measurements of N2O, CO, CH4, and CO2 for TOTE-VOTE. Ground-based instruments collected lidar data while balloon sondes gathered information on wind direction, wind speed, atmospheric pressure, and air temperature.
Tropical Ozone Transport Experiment - Vortex Ozone Transport Experiment (TOTE-VOTE) Sonde Data
공공데이터포털
TOTE-VOTE_Sondes_Data_1 is the radiosonde data collected during the Tropical Ozone Transport Experiment – Vortex Ozone Transport Experiment (TOTE-VOTE) campaign. Data collection for this product is complete.The Tropical Ozone Transport Experiment – Vortex Ozone Transport Experiment (TOTE-VOTE) campaign was conducted by NASA from December 1995 to February 1996. TOTE-VOTE took place in the Pacific region with the goal of gaining a better understanding of background transport processes from tropical/polar regions to midlatitudes. Nineteen flights were conducted using the NASA DC-8 aircraft and balloon sondes with the purpose of measuring the transport of filaments of air moved in or out of the arctic polar vortex and the tropical stratospheric reservoir. TOTE-VOTE also utilized ground-based instruments along with aircrafts.Various instrumentation was used during TOTE-VOTE in order to achieve the mission objectives. The DC-8 aircraft was equipped with the NCAR NOxyO3 instrument, the NASA Langley Airborne Differential Absorption Lidar (DIAL) system, the Forward Scattering Spectrometer Probe (FSSP), the Microwave Temperature Profiler (MTP), the Multiple-Angle Aerosol Spectrometer Probe (MASP), and the diode laser spectrometer system, historically known as the Differential Absorption Carbon monOxide Measurement (DACOM). The NCAR NOxyO3 is a type of 4-channel chemiluminescence instrument that was used to quantify NOx (NO and NO2), NOy (total reactive nitrogen), and ozone (O3) in the air. The DIAL system used four lasers to make DIAL O3 profiles, along with collecting data on aerosol backscattering, aerosol depolarization ratio, aerosol extinction, and aerosol optical depth. The FSSP is an optical particle counter that measured particle size distribution. The MTP is a passive microwave radiometer that measured natural thermal emissions and was used during TOTE-VOTE to record temperature. The MASP spectrometer collected in-situ measurements of particle concentration, particle size distribution, and particle extinction. Along with the MASP’s in-situ measurements, the DACOM spectrometer utilized three diode lasers at different wavelengths to take in-situ measurements of N2O, CO, CH4, and CO2 for TOTE-VOTE. Ground-based instruments collected lidar data while balloon sondes gathered information on wind direction, wind speed, atmospheric pressure, and air temperature.
Tropical Ozone Transport Experiment - Vortex Ozone Transport Experiment (TOTE-VOTE) Ground Site Lidar Data
공공데이터포털
TOTE-VOTE_Ground_Data_1 is the ground site data collected as part of the Tropical Ozone Transport Experiment – Vortex Ozone Transport Experiment (TOTE-VOTE) campaign. Data featured in the product includes data from the NASA GSFC Stratospheric Ozone Lidar Trailer Experiment (STROZ-LITE) at Mauna Loa, and the JPL Table Mountain Facility, Mauna Loa Lidar. Data collection for this product is complete. The Tropical Ozone Transport Experiment – Vortex Ozone Transport Experiment (TOTE-VOTE) campaign was conducted by NASA from December 1995 to February 1996. TOTE-VOTE took place in the Pacific region with the goal of gaining a better understanding of background transport processes from tropical/polar regions to midlatitudes. Nineteen flights were conducted using the NASA DC-8 aircraft and balloon sondes with the purpose of measuring the transport of filaments of air moved in or out of the arctic polar vortex and the tropical stratospheric reservoir. TOTE-VOTE also utilized ground-based instruments along with aircrafts.Various instrumentation was used during TOTE-VOTE in order to achieve the mission objectives. The DC-8 aircraft was equipped with the NCAR NOxyO3 instrument, the NASA Langley Airborne Differential Absorption Lidar (DIAL) system, the Forward Scattering Spectrometer Probe (FSSP), the Microwave Temperature Profiler (MTP), the Multiple-Angle Aerosol Spectrometer Probe (MASP), and the diode laser spectrometer system, historically known as the Differential Absorption Carbon monOxide Measurement (DACOM). The NCAR NOxyO3 is a type of 4-channel chemiluminescence instrument that was used to quantify NOx (NO and NO2), NOy (total reactive nitrogen), and ozone (O3) in the air. The DIAL system used four lasers to make DIAL O3 profiles, along with collecting data on aerosol backscattering, aerosol depolarization ratio, aerosol extinction, and aerosol optical depth. The FSSP is an optical particle counter that measured particle size distribution. The MTP is a passive microwave radiometer that measured natural thermal emissions and was used during TOTE-VOTE to record temperature. The MASP spectrometer collected in-situ measurements of particle concentration, particle size distribution, and particle extinction. Along with the MASP’s in-situ measurements, the DACOM spectrometer utilized three diode lasers at different wavelengths to take in-situ measurements of N2O, CO, CH4, and CO2 for TOTE-VOTE. Ground-based instruments collected lidar data while balloon sondes gathered information on wind direction, wind speed, atmospheric pressure, and air temperature.
Tropical Ozone Transport Experiment – Vortex Ozone Transport Experiment (TOTE-VOTE) DC-8 In Situ Aerosol Data
공공데이터포털
TOTE-VOTE_Aerosol_AircraftInSitu_DC8_Data_1 is the in situ collected onboard the DC-8 aircraft during the Tropical Ozone Transport Experiment – Vortex Ozone Transport Experiment (TOTE-VOTE) campaign. Data from the Multiple-Angle Spectrometer Probe (MASP), 2D-C Aerosol Probe, and FSSP Aerosol Size distributions are featured in this data product. Data collection is complete.The Tropical Ozone Transport Experiment – Vortex Ozone Transport Experiment (TOTE-VOTE) campaign was conducted by NASA from December 1995 to February 1996. TOTE-VOTE took place in the Pacific region with the goal of gaining a better understanding of background transport processes from tropical/polar regions to midlatitudes. Nineteen flights were conducted using the NASA DC-8 aircraft and balloon sondes with the purpose of measuring the transport of filaments of air moved in or out of the arctic polar vortex and the tropical stratospheric reservoir. TOTE-VOTE also utilized ground-based instruments along with aircrafts.Various instrumentation was used during TOTE-VOTE in order to achieve the mission objectives. The DC-8 aircraft was equipped with the NCAR NOxyO3 instrument, the NASA Langley Airborne Differential Absorption Lidar (DIAL) system, the Forward Scattering Spectrometer Probe (FSSP), the Microwave Temperature Profiler (MTP), the Multiple-Angle Aerosol Spectrometer Probe (MASP), and the diode laser spectrometer system, historically known as the Differential Absorption Carbon monOxide Measurement (DACOM). The NCAR NOxyO3 is a type of 4-channel chemiluminescence instrument that was used to quantify NOx (NO and NO2), NOy (total reactive nitrogen), and ozone (O3) in the air. The DIAL system used four lasers to make DIAL O3 profiles, along with collecting data on aerosol backscattering, aerosol depolarization ratio, aerosol extinction, and aerosol optical depth. The FSSP is an optical particle counter that measured particle size distribution. The MTP is a passive microwave radiometer that measured natural thermal emissions and was used during TOTE-VOTE to record temperature. The MASP spectrometer collected in-situ measurements of particle concentration, particle size distribution, and particle extinction. Along with the MASP’s in-situ measurements, the DACOM spectrometer utilized three diode lasers at different wavelengths to take in-situ measurements of N2O, CO, CH4, and CO2 for TOTE-VOTE. Ground-based instruments collected lidar data while balloon sondes gathered information on wind direction, wind speed, atmospheric pressure, and air temperature.
Tropical Ozone Transport Experiment - Vortex Ozone Transport Experiment (TOTE-VOTE) DC-8 Ancillary Data
공공데이터포털
TOTE-VOTE_Analysis_DC8_Data_1 is the ancillary datasets from the Tropical Ozone Transport Experiment – Vortex Ozone Transport Experiment (TOTE-VOTE) campaign. This dataset contains postscript files of datasets to support DC-8 aircraft measurements. The Tropical Ozone Transport Experiment – Vortex Ozone Transport Experiment (TOTE-VOTE) campaign was conducted by NASA from December 1995 to February 1996. TOTE-VOTE took place in the Pacific region with the goal of gaining a better understanding of background transport processes from tropical/polar regions to midlatitudes. Nineteen flights were conducted using the NASA DC-8 aircraft and balloon sondes with the purpose of measuring the transport of filaments of air moved in or out of the arctic polar vortex and the tropical stratospheric reservoir. TOTE-VOTE also utilized ground-based instruments along with aircrafts.Various instrumentation was used during TOTE-VOTE in order to achieve the mission objectives. The DC-8 aircraft was equipped with the NCAR NOxyO3 instrument, the NASA Langley Airborne Differential Absorption Lidar (DIAL) system, the Forward Scattering Spectrometer Probe (FSSP), the Microwave Temperature Profiler (MTP), the Multiple-Angle Aerosol Spectrometer Probe (MASP), and the diode laser spectrometer system, historically known as the Differential Absorption Carbon monOxide Measurement (DACOM). The NCAR NOxyO3 is a type of 4-channel chemiluminescence instrument that was used to quantify NOx (NO and NO2), NOy (total reactive nitrogen), and ozone (O3) in the air. The DIAL system used four lasers to make DIAL O3 profiles, along with collecting data on aerosol backscattering, aerosol depolarization ratio, aerosol extinction, and aerosol optical depth. The FSSP is an optical particle counter that measured particle size distribution. The MTP is a passive microwave radiometer that measured natural thermal emissions and was used during TOTE-VOTE to record temperature. The MASP spectrometer collected in-situ measurements of particle concentration, particle size distribution, and particle extinction. Along with the MASP’s in-situ measurements, the DACOM spectrometer utilized three diode lasers at different wavelengths to take in-situ measurements of N2O, CO, CH4, and CO2 for TOTE-VOTE. Ground-based instruments collected lidar data while balloon sondes gathered information on wind direction, wind speed, atmospheric pressure, and air temperature.