Near-global, upper 2000 m estimates of preindustrial and year 2002 ocean pH, aragonite saturation state, carbon dioxide partial pressure, hydrogen ion concentration, and Revelle factor values, and their total changes caused by anthropogenic carbon accumulation in addition to the component of the changes induced by carbonate system nonlinearities (NCEI Accession 0290073)
공공데이터포털
This dataset consists of year 2002 and preindustrial (pi) OA metric values and their uncertainties (u), total OA metric changes (d) due to anthropogenic carbon accumulation to the year 2002 and the component of those changes caused by carbonate system nonlinearities (n), with associated uncertainties provided. Uncertainties were estimated using a 1000 iteration Monte Carlo simulation. Data from the upper 2000 m of the GLODAPv2.2016b mapped data product (https://doi.org/10.3334/cdiac/otg.ndp093_glodapv2), described in Lauvset et al., 2016 (https://doi.org/10.5194/essd-8-325-2016), and from the preformed properties product of Carter et al., 2021 (https://doi.org/10.1029/2020GB006623) were used to make these estimates. Calculation details are described in Fassbender et al., 2023 (https://doi.org/10.1029/2023GB007843). Year 2002 aragonite saturation state and pH values, and their uncertainties, are reproduced from the GLODAPv2.2016b mapped data product (https://doi.org/10.7289/v5kw5d97) and are provided here for user convenience with the permission of the original data producer. Version 1.0.
Global Ocean Data Analysis Project version 2.2021 (GLODAPv2.2021) (NCEI Accession 0237935)
공공데이터포털
This dataset consists of the GLODAPv2.2021 data product composed of data from 989 scientific cruises covering the global ocean between 1972 and 2020. It includes full depth discrete bottle measurements of salinity, oxygen, nitrate, silicate, phosphate, dissolved inorganic carbon (TCO2), total alkalinity (TAlk), CO2 fugacity (fCO2), pH, chlorofluorocarbons (CFC-11, CFC-12, CFC-113, and CCl4), various isotopes and organic compounds. It was created by appending data from 43 cruises to GLODAPv2.2020 (Olsen et al., 2020, NCEI Accession 0210813). The data for salinity, oxygen, nitrate, silicate, phosphate, TCO2, TAlk, pH, CFC-11, CFC-12, CFC-113, and CCl4 were subjected to primary and secondary quality control. Severe biases in these data have been corrected for, and outliers removed. However, differences in data related to any known or likely time trends or variations have not been corrected for. These data are believed to be accurate to 0.005 in salinity, 1% in oxygen, 2% in nitrate, 2% in silicate, 2% in phosphate, 4 µmol kg-1 in TCO2, 4 µmol kg-1 in TAlk, and for the halogenated transient tracers: 5%.
Global Ocean Data Analysis Project version 2.2022 (GLODAPv2.2022) (NCEI Accession 0257247)
공공데이터포털
This dataset consists of the GLODAPv2.2022 data product composed of data from 1085 scientific cruises covering the global ocean between 1972 and 2021. It includes full depth discrete bottle measurements of salinity, oxygen, nitrate, silicate, phosphate, dissolved inorganic carbon (TCO2), total alkalinity (TAlk), CO2 fugacity (fCO2), pH, chlorofluorocarbons (CFC-11, CFC-12, CFC-113, and CCl4), SF6, and various isotopes and organic compounds. It was created by appending data from 96 cruises to GLODAPv2.2021 (Lauvset et al., 2021, NCEI Accession 0237935). The data for salinity, oxygen, nitrate, silicate, phosphate, TCO2, TAlk, pH, CFC-11, CFC-12, CFC-113, CCl4, and SF6 were subjected to primary and secondary quality control. Severe biases in these data have been corrected for, and outliers removed. However, differences in data related to any known or likely time trends or variations have not been corrected for. These data are believed to be accurate to 0.005 in salinity, 1% in oxygen, 2% in nitrate, 2% in silicate, 2% in phosphate, 4 µmol kg-1 in TCO2, 4 µmol kg-1 in TAlk, and for the halogenated transient tracers and SF6: 5%.
Global Ocean Data Analysis Project version 2.2023 (GLODAPv2.2023) (NCEI Accession 0283442)
공공데이터포털
This dataset consists of the GLODAPv2.2023 data product composed of data from 1108 scientific cruises covering the global ocean between 1972 and 2021. It includes full depth discrete bottle measurements of salinity, oxygen, nitrate, silicate, phosphate, dissolved inorganic carbon (TCO2), total alkalinity (TAlk), CO2 fugacity (fCO2), pH, chlorofluorocarbons (CFC-11, CFC-12, CFC-113, and CCl4), SF6, and various isotopes and organic compounds. It was created by appending data from 23 cruises to GLODAPv2.2022 (Lauvset et al., 2022, NCEI Accession 0257247). The data for salinity, oxygen, nitrate, silicate, phosphate, TCO2, TAlk, pH, CFC-11, CFC-12, CFC-113, CCl4, and SF6 were subjected to primary and secondary quality control. Severe biases in these data have been corrected for, and outliers removed. However, differences in data related to any known or likely time trends or variations have not been corrected for. These data are believed to be accurate to 0.005 in salinity, 1% in oxygen, 2% in nitrate, 2% in silicate, 2% in phosphate, 4 µmol kg-1 in TCO2, 4 µmol kg-1 in TAlk, and for the halogenated transient tracers and SF6: 5%.
Carbon-14 Measurements in Surface Water CO2 from the Atlantic, Indian and Pacific Oceans from 1965-01-01 to 1994-12-31 (NCEI Accession 0157055)
공공데이터포털
This dataset includes Carbon-14 Measurements in Surface Water CO2 from the Arctic Ocean, Barents Sea, Bay of Biscay, Indian Ocean, Ionian Sea, Mediterranean Sea, Atlantic Ocean, Pacific Ocean, Norwegian Sea, Southern Oceans, and Tasman Sea from 1965-01-01 to 1994-12-31. These data include DELTA CARBON-13, DELTA CARBON-14, SALINITY, SEA SURFACE TEMPERATURE and SIGMA-T. The instruments used to collect these data include not applicable. These data were collected by Reidar Nydal of Norwegian University of Science and Technology as part of the Carbon 14: Surface Measurements dataset.
Climatological Distributions of pH, pCO2, Total CO2, Alkalinity, and CaCO3 Saturation in the Global Surface Ocean (NCEI Accession 0164568)
공공데이터포털
Climatological mean monthly distributions of pH in the total H+ scale, total CO2 concentration (TCO2), and the degree of CaCO3 saturation for the global surface ocean waters (excluding coastal areas) are calculated using a data set for pCO2, alkalinity and nutrient concentrations in surface waters (depths less than 50 m), which is built upon the GLODAP, CARINA and LDEO database. The mutual consistency among these measured parameters is demonstrated using the inorganic carbon chemistry model with the dissociation constants for carbonic acid by Lueker et al. (2000) and for boric acid by Dickson (1990). The global ocean is divided into 24 regions, and the linear potential alkalinity (total alkalinity + nitrate) versus salinity relationships are established for each region. The mean monthly distributions of pH and carbon chemistry parameters for the reference year 2005 are computed using the climatological mean monthly pCO2 data adjusted to a reference year 2005 and the alkalinity estimated from the potential alkalinity versus salinity relationships. The climatological monthly mean values of pCO2 over the global ocean are compiled for a 4° x 5° grid for the reference year 2005, and the gridded data for each of 12 months are included in this database. This is updated version of Takahashi et al. (2009) for the reference year 2000 representing non-El Niño years using a database of about 6.5 million pCO2 data (less coastal areas of North and South America) observed in 1957-2012 (Takahashi et al., 2013). The equatorial zone (4°N-4°S) of the Pacific is excluded from the analysis because of the large interannual changes associated with the El Niño-Southern Oscillation events. The pH thus calculated ranges from 7.9 to 8.2. Lower values are located in the upwelling regions in the tropical Pacific and in the Arabian and Bering Seas; and higher values are found in the subpolar and polar waters during the spring-summer months of intense photosynthetic production. The vast areas of subtropical oceans have seasonally varying pH values ranging from 8.05 during warmer months to 8.15 during colder months. The warm tropical and subtropical waters are supersaturated by a factor of as much as 4.2 with respect to aragonite and 6.3 for calcite, whereas the cold subpolar and polar waters are less supersaturated only by 1.2 for aragonite and 2 for calcite because of the lower pH values resulting from greater TCO2 concentrations. In the western Arctic Ocean, aragonite undersaturation is observed.
A combined globally mapped carbon dioxide (CO2) flux estimate based on the Surface Ocean CO2 Atlas Database (SOCAT) and Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) biogeochemistry floats from 1982 to 2017 (NCEI Accession 0191304)
공공데이터포털
This dataset contains a combined globally mapped estimate of the air-sea exchange of carbon dioxide (CO2) based on Surface Ocean CO2 Atlas Database (SOCAT) partial pressure of CO2 (pCO2) and calculated pCO2 from Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) biogeochemistry floats from 1982 to 2017. The pCO2 fields were created using a 2-step neural network technique. In a first step, the global ocean is divided into 16 biogeochemical provinces using a self-organizing map. In a second step, the non-linear relationship between variables known to drive the surface ocean carbon system and gridded observations from the SOCAT dataset (Bakker et al., 2016) starting in 1982 in various combinations with calculated pCO2 from biogeochemical ARGO floats starting in 2014 from the SOCCOM project (Johnson et al., 2017) is reconstructed using a feed-forward neural network within each province separately. The final product is then produced by projecting these driving variables, i.e., surface temperature, chlorophyll, mixed layer depth, and atmospheric CO2 onto oceanic pCO2 using these non-linear relationships. This results in monthly pCO2 fields at 1°x1° resolution covering the entire globe with the exception of the Arctic Ocean and few marginal seas. The air-sea CO2 flux is then computed using a standard bulk formula.
Surface Ocean CO2 Atlas Database Version 2022 (SOCATv2022) (NCEI Accession 0253659)
공공데이터포털
This dataset consists of the Surface Ocean CO2 Atlas Version 2022 (SOCATv2022) data product files. The ocean absorbs one quarter of the global CO2 emissions from human activity. The community-led Surface Ocean CO2 Atlas (www.socat.info) is key for the quantification of ocean CO2 uptake and its variation, now and in the future. SOCAT version 2022 has quality-controlled in situ surface ocean fCO2 (fugacity of CO2) measurements on ships, moorings, autonomous and drifting surface platforms for the global oceans and coastal seas from 1957 to 2021. The main synthesis and gridded products contain 33.7 million fCO2 values with an estimated accuracy of better than 5 μatm. A further 6.4 million fCO2 sensor data with an estimated accuracy of 5 to 10 μatm are separately available. During quality control, marine scientists assign a flag to each data set, as well as WOCE flags of 2 (good), 3 (questionable) or 4 (bad) to individual fCO2 values. Data sets are assigned flags of A and B for an estimated accuracy of better than 2 μatm, flags of C and D for an accuracy of better than 5 μatm and a flag of E for an accuracy of better than 10 μatm. Bakker et al. (2016) describe the quality control criteria used in SOCAT versions 3 to 2022. Quality control comments for individual data sets can be accessed via the SOCAT Data Set Viewer (www.socat.info). All data sets, where data quality has been deemed acceptable, have been made public. The main SOCAT synthesis files and the gridded products contain all data sets with an estimated accuracy of better than 5 µatm (data set flags of A to D) and fCO2 values with a WOCE flag of 2. Access to data sets with an estimated accuracy of 5 to 10 (flag of E) and fCO2 values with flags of 3 and 4 is via additional data products and the Data Set Viewer (Table 8 in Bakker et al., 2016). SOCAT publishes a global gridded product with a 1° longitude by 1° latitude resolution. A second product with a higher resolution of 0.25° longitude by 0.25° latitude is available for the coastal seas. The gridded products contain all data sets with an estimated accuracy of better than 5 µatm (data set flags of A to D) and fCO2 values with a WOCE flag of 2. Gridded products are available monthly, per year and per decade. Two powerful, interactive, online viewers, the Data Set Viewer and the Gridded Data Viewer (www.socat.info), enable investigation of the SOCAT synthesis and gridded data products. SOCAT data products can be downloaded. Matlab code is available for reading these files. Ocean Data View also provides access to the SOCAT data products (www.socat.info). SOCAT data products are discoverable, accessible and citable. The SOCAT Data Use Statement (www.socat.info) asks users to generously acknowledge the contribution of SOCAT scientists by invitation to co-authorship, especially for data providers in regional studies, and/or reference to relevant scientific articles. The SOCAT website (www.socat.info) provides a single access point for online viewers, downloadable data sets, the Data Use Statement, a list of contributors and an overview of scientific publications on and using SOCAT. Automation of data upload and initial data checks allows annual releases of SOCAT from version 4 onwards. SOCAT is used for quantification of ocean CO2 uptake and ocean acidification and for evaluation of climate models and sensor data. SOCAT products inform the annual Global Carbon Budget since 2013. The annual SOCAT releases by the SOCAT scientific community are a Voluntary Commitment for United Nations Sustainable Development Goal 14.3 (Reduce Ocean Acidification) (#OceanAction20464). More broadly the SOCAT releases contribute to UN SDG 13 (Climate Action) and SDG 14 (Life Below Water), and to the UN Decade of Ocean Science for Sustainable Development. Hundreds of peer-reviewed scientific publications and high-impact reports cite SOCAT. The SOCAT community-led synthesis product is a key step in the value chain based on in situ inorganic
Surface Ocean CO2 Atlas Database Version 2024 (SOCATv2024) (NCEI Accession 0293257)
공공데이터포털
The ocean absorbs one quarter of the global CO2 emissions from human activity. The community-led Surface Ocean CO2 Atlas (www.socat.info) is key for the quantification of ocean CO2 uptake and its variation, now and in the future. SOCAT version 2024 has quality-controlled in situ surface ocean fCO2 (fugacity of CO2) measurements on ships, moorings, sailing yachts, autonomous and drifting surface platforms for the global oceans and coastal seas from 1957 to 2023. The main synthesis and gridded products contain fCO2 values with an estimated accuracy of better than 5 μatm. Sensor fCO2 data with an estimated accuracy of better than 10 μatm are separately available. During quality control, marine scientists assign a flag to each data set, as well as WOCE flags of 2 (good), 3 (questionable) or 4 (bad) to individual fCO2 values. Data sets are assigned flags of A and B for an estimated accuracy of better than 2 μatm, flags of C and D for an accuracy of better than 5 μatm and a flag of E for an accuracy of better than 10 μatm. Bakker et al. (2016) describe the quality control criteria used in SOCAT versions 3 to 2024. Quality control comments for individual data sets can be accessed via the SOCAT Data Set Viewer (www.socat.info). All data sets, where data quality has been deemed acceptable, have been made public. The main SOCAT synthesis files and the gridded products contain all data sets with an estimated accuracy of better than 5 µatm (data set flags of A to D) and fCO2 values with a WOCE flag of 2. Access to data sets with an estimated accuracy of better than 10 µatm (flag of E) and fCO2 values with flags of 3 and 4 is via additional data products and the Data Set Viewer (Table 8 in Bakker et al., 2016). SOCAT publishes a global gridded product with a 1° longitude by 1° latitude resolution without gap filling. A second product with a higher resolution of 0.25° longitude by 0.25° latitude is available for the coastal seas. The gridded products contain all data sets with an estimated accuracy of better than 5 µatm (data set flags of A to D) and fCO2 values with a WOCE flag of 2. Gridded products are available monthly, per year and per decade. Two powerful, interactive, online viewers, the Data Set Viewer and the Gridded Data Viewer (www.socat.info), enable investigation of the SOCAT synthesis and gridded data products. SOCAT data products can be downloaded. Matlab code is available for reading these files. Ocean Data View also provides access to the SOCAT data products (www.socat.info). SOCAT data products are discoverable, accessible and citable. The SOCAT Data Use Statement (www.socat.info) asks users to generously acknowledge the contribution of SOCAT scientists by invitation to co-authorship, especially for data providers in regional studies, and/or reference to relevant scientific articles. The SOCAT website (www.socat.info) provides a single access point for online viewers, downloadable data sets, the Data Use Statement, a list of contributors and an overview of scientific publications on and using SOCAT. Automation of data upload and initial data checks allows annual releases of SOCAT from version 4 onward. SOCAT is used for quantification of ocean CO2 uptake and ocean acidification and for evaluation of climate models and sensor data. SOCAT products inform the annual Global Carbon Budget since 2013. The annual SOCAT releases by the SOCAT scientific community are a Voluntary Commitment for United Nations Sustainable Development Goal 14.3 (Reduce Ocean Acidification) (#OceanAction20464). More broadly the SOCAT releases contribute to UN SDG 13 (Climate Action) and SDG 14 (Life Below Water), and to the UN Decade of Ocean Science for Sustainable Development. Hundreds of peer-reviewed scientific publications and high-impact reports cite SOCAT. The SOCAT community-led synthesis product is a key step in the value chain based on in situ inorganic carbon measurements of the oceans, which provides policy makers with critical