Cup Corals--Santa Barbara Channel, California
공공데이터포털
This part of DS 781 presents data for the map showing the predicted distribution of cup corals in the Santa Barbara Channel, California, region. The raster data file is included in "CupCorals_SantaBarbaraChannel.zip," which is accessible from https://pubs.usgs.gov/ds/781/SantaBarbaraChannel/data_catalog_SantaBarbaraChannel.html. Presence-absence data of benthic macro-invertebrates and associated habitat (that is, sediment type and depth) were collected using a towed camera sled in selected areas along the coast off southern California during a ground-truth observation cruise conducted by the U.S. Geological Survey and NOAA National Marine Fisheries Service for the California Seafloor Mapping Program. Benthic community structure was determined from 35 video towed-camera transects within California's State Waters 3-nautical-mile limit in the Santa Barbara Channel. These transects produced a total of 923 10-second observations from the Offshore of Refugio Beach map area (34.5 degrees N., 120.1 degrees W.) to the Hueneme Canyon and vicinity map area (34.1 degrees N., 119.2 degrees W.). Presence-absence data were collected for 29 benthic, structure-forming nonmobile taxa. Using this information, generalized linear models (GLMs) were developed to predict the probability of occurrence of five commonly observed taxa (cup corals, hydroids, short and tall sea pens, and brittle stars in the sediment) in five map areas within the Santa Barbara Channel (SBC). A sixth map area (Offshore of Carpinteria) was not modeled owing to insufficient data. The analysis demonstrates that the community structure for the five map areas can be divided into three statistically distinct groups: (1) the Hueneme Canyon and vicinity and the Offshore of Ventura map areas; (2) the Offshore of Santa Barbara and the Offshore of Coal Oil Point map areas; and (3) the Offshore of Refugio Beach map area. These three distinct groups are the main reason that the probability for each taxa can be so dramatically different within one predictive-distribution map area. The five most frequently observed benthic macro-invertebrate taxa were selected for these predictive-distribution grids. Presence-absence data for each selected invertebrate were fit to specific generalized linear models using geographic location, depth, and seafloor character as covariates. Data for the covariates were informed by the bathymetry, seafloor character, and other ground-truth data from the different map areas of the Santa Barbara Channel region that are part of the California State Waters Map Series DS 781. Observations based on depth were limited by the capability of the towed camera sled; as a result, no predictions were made below depths of 150 m (in other words, on the continental slope or in Hueneme Canyon). Cup corals and hydroids had high predicted probabilities of occurrence in areas of hard substrata, whereas short and tall sea pens were predicted to occur in parts of the SBC that had unconsolidated and mixed sediment. Our model predicted that brittle stars would occur throughout the entire SBC on various bottom types.
Predictive models of the abundance and distribution of deep-sea corals and sponges in the Gulf of Alaska (NCEI Accession 0289894)
공공데이터포털
Deep-sea coral and sponge presence and abundance (measured as catch per unit effort (CPUE) were generated based off data from bottom trawl surveys between 1993 to 2013. Sponge models were left at the class level due to taxonomic uncertainty. Models of coral were the combination of seven families (Acanthogorgidae, Paragorgidae, Isididae, Plexauridae, Primnoidae and Stylasteridae). One coral family, due to its dominance in the region, was modeled on its own. Another coral group, sea whips (order Pennatuloidea), were also modeled independently due to their dominance in soft substrate environments. All models are presented in the GeoTIFF format. Environmental layers used in the modeling of the taxa are also part of this data package. They include the parameters GeoTIFF rasters of latitude, longitude, bathymetry, mean bottom temperature for the region, current speed and direction for the deepest depth bin at each sampling point, ocean color, seafloor slope, mean current speed (exclusive of tides), and max tidal current predicted over a year. For details on the measurement of each environmental layer, see the journal article Rooper et al. (2017).
Tall Sea Pens--Santa Barbara Channel, California
공공데이터포털
This part of DS 781 presents data for the map showing the predicted distribution of tall sea pens in the Santa Barbara Channel, California, region. The raster data file is included in "TallSeaPens_SantaBarbaraChannel.zip," which is accessible from https://pubs.usgs.gov/ds/781/SantaBarbaraChannel/data_catalog_SantaBarbaraChannel.html. Presence-absence data of benthic macro-invertebrates and associated habitat (that is, sediment type and depth) were collected using a towed camera sled in selected areas along the coast off southern California during a ground-truth observation cruise conducted by the U.S. Geological Survey and NOAA National Marine Fisheries Service for the California Seafloor Mapping Program. Benthic community structure was determined from 35 video towed-camera transects within California's State Waters 3-nautical-mile limit in the Santa Barbara Channel. These transects produced a total of 923 10-second observations from the Offshore of Refugio Beach map area (34.5 degrees N., 120.1 degrees W.) to the Hueneme Canyon and vicinity map area (34.1 degrees N., 119.2 degrees W.). Presence-absence data were collected for 29 benthic, structure-forming nonmobile taxa. Using this information, generalized linear models (GLMs) were developed to predict the probability of occurrence of five commonly observed taxa (cup corals, hydroids, short and tall sea pens, and brittle stars in the sediment) in five map areas within the Santa Barbara Channel (SBC). A sixth map area (Offshore of Carpinteria) was not modeled owing to insufficient data. The analysis demonstrates that the community structure for the five map areas can be divided into three statistically distinct groups: (1) the Hueneme Canyon and vicinity and the Offshore of Ventura map areas; (2) the Offshore of Santa Barbara and the Offshore of Coal Oil Point map areas; and (3) the Offshore of Refugio Beach map area. These three distinct groups are the main reason that the probability for each taxa can be so dramatically different within one predictive-distribution map area. The five most frequently observed benthic macro-invertebrate taxa were selected for these predictive-distribution grids. Presence-absence data for each selected invertebrate were fit to specific generalized linear models using geographic location, depth, and seafloor character as covariates. Data for the covariates were informed by the bathymetry, seafloor character, and other ground-truth data from the different map areas of the Santa Barbara Channel region that are part of the California State Waters Map Series DS 781. Observations based on depth were limited by the capability of the towed camera sled; as a result, no predictions were made below depths of 150 m (in other words, on the continental slope or in Hueneme Canyon). Cup corals and hydroids had high predicted probabilities of occurrence in areas of hard substrata, whereas short and tall sea pens were predicted to occur in parts of the SBC that had unconsolidated and mixed sediment. Our model predicted that brittle stars would occur throughout the entire SBC on various bottom types.
Stacked species distribution models of deep-sea corals and sponges off the United States west coast (NCEI Accession 0303081)
공공데이터포털
These data are a set of raster maps of community-level predictions of deep-sea coral and sponge taxa distributions off the continental U.S. west coast, spanning depths from 50 to 1200 m. The raster files come in two versions: one where predicted distribution suitability range from 0 - 1 and one where the predicted suitability is classified into five classes; very low (0â0.2), low (0.21â0.40), moderate (0.41â0.60), high (0.61â0.80) and very high (0.81â1.00). These raster maps were derived from 40 habitat suitability models (HSMs) conducted at the genus- and species-level maps done by Poti et al. (2020). A cluster analysis of the original individually-modeled taxa identified 10 groups whose member HSMs were stacked and averaged to produce a stacked species distribution model (S-SDM). Further details about the generation of the S-SDMs and their interpretation can be found in Shantharam et al. (2025).
Short Sea Pens--Santa Barbara Channel, California
공공데이터포털
This part of DS 781 presents data for the map showing the predicted distribution of short sea pens in the Santa Barbara Channel, California, region. The raster data file is included in "ShortSeaPens_SantaBarbaraChannel.zip," which is accessible from https://pubs.usgs.gov/ds/781/SantaBarbaraChannel/data_catalog_SantaBarbaraChannel.html. Presence-absence data of benthic macro-invertebrates and associated habitat (that is, sediment type and depth) were collected using a towed camera sled in selected areas along the coast off southern California during a ground-truth observation cruise conducted by the U.S. Geological Survey and NOAA National Marine Fisheries Service for the California Seafloor Mapping Program. Benthic community structure was determined from 35 video towed-camera transects within California's State Waters 3-nautical-mile limit in the Santa Barbara Channel. These transects produced a total of 923 10-second observations from the Offshore of Refugio Beach map area (34.5 degrees N., 120.1 degrees W.) to the Hueneme Canyon and vicinity map area (34.1 degrees N., 119.2 degrees W.). Presence-absence data were collected for 29 benthic, structure-forming nonmobile taxa. Using this information, generalized linear models (GLMs) were developed to predict the probability of occurrence of five commonly observed taxa (cup corals, hydroids, short and tall sea pens, and brittle stars in the sediment) in five map areas within the Santa Barbara Channel (SBC). A sixth map area (Offshore of Carpinteria) was not modeled owing to insufficient data. The analysis demonstrates that the community structure for the five map areas can be divided into three statistically distinct groups: (1) the Hueneme Canyon and vicinity and the Offshore of Ventura map areas; (2) the Offshore of Santa Barbara and the Offshore of Coal Oil Point map areas; and (3) the Offshore of Refugio Beach map area. These three distinct groups are the main reason that the probability for each taxa can be so dramatically different within one predictive-distribution map area. The five most frequently observed benthic macro-invertebrate taxa were selected for these predictive-distribution grids. Presence-absence data for each selected invertebrate were fit to specific generalized linear models using geographic location, depth, and seafloor character as covariates. Data for the covariates were informed by the bathymetry, seafloor character, and other ground-truth data from the different map areas of the Santa Barbara Channel region that are part of the California State Waters Map Series DS 781. Observations based on depth were limited by the capability of the towed camera sled; as a result, no predictions were made below depths of 150 m (in other words, on the continental slope or in Hueneme Canyon). Cup corals and hydroids had high predicted probabilities of occurrence in areas of hard substrata, whereas short and tall sea pens were predicted to occur in parts of the SBC that had unconsolidated and mixed sediment. Our model predicted that brittle stars would occur throughout the entire SBC on various bottom types.
Brittle Stars--Santa Barbara Channel, California
공공데이터포털
This part of DS 781 presents data for the map showing the predicted distribution of brittle stars in the Santa Barbara Channel, California, region. The raster data file is included in "BrittleStars_SantaBarbaraChannel.zip," which is accessible from https://pubs.usgs.gov/ds/781/SantaBarbaraChannel/data_catalog_SantaBarbaraChannel.html. Presence-absence data of benthic macro-invertebrates and associated habitat (that is, sediment type and depth) were collected using a towed camera sled in selected areas along the coast off southern California during a ground-truth observation cruise conducted by the U.S. Geological Survey and NOAA National Marine Fisheries Service for the California Seafloor Mapping Program. Benthic community structure was determined from 35 video towed-camera transects within California's State Waters 3-nautical-mile limit in the Santa Barbara Channel. These transects produced a total of 923 10-second observations from the Offshore of Refugio Beach map area (34.5 degrees N., 120.1 degrees W.) to the Hueneme Canyon and vicinity map area (34.1 degrees N., 119.2 degrees W.). Presence-absence data were collected for 29 benthic, structure-forming nonmobile taxa. Using this information, generalized linear models (GLMs) were developed to predict the probability of occurrence of five commonly observed taxa (cup corals, hydroids, short and tall sea pens, and brittle stars in the sediment) in five map areas within the Santa Barbara Channel (SBC). A sixth map area (Offshore of Carpinteria) was not modeled owing to insufficient data. The analysis demonstrates that the community structure for the five map areas can be divided into three statistically distinct groups: (1) the Hueneme Canyon and vicinity and the Offshore of Ventura map areas; (2) the Offshore of Santa Barbara and the Offshore of Coal Oil Point map areas; and (3) the Offshore of Refugio Beach map area. These three distinct groups are the main reason that the probability for each taxa can be so dramatically different within one predictive-distribution map area. The five most frequently observed benthic macro-invertebrate taxa were selected for these predictive-distribution grids. Presence-absence data for each selected invertebrate were fit to specific generalized linear models using geographic location, depth, and seafloor character as covariates. Data for the covariates were informed by the bathymetry, seafloor character, and other ground-truth data from the different map areas of the Santa Barbara Channel region that are part of the California State Waters Map Series DS 781. Observations based on depth were limited by the capability of the towed camera sled; as a result, no predictions were made below depths of 150 m (in other words, on the continental slope or in Hueneme Canyon). Cup corals and hydroids had high predicted probabilities of occurrence in areas of hard substrata, whereas short and tall sea pens were predicted to occur in parts of the SBC that had unconsolidated and mixed sediment. Our model predicted that brittle stars would occur throughout the entire SBC on various bottom types.
Benthic data for corals, macroalgae, invertebrates, and non-living bottom types from Fagatele Bay, Pago Pago, and Fagasa, American Samoa, 2004-2008 (NCEI Accession 0066319)
공공데이터포털
This data set was derived from surveys in Fagatele Bay National Marine Sanctuary, Pago Pago (Rainmaker and Aua), and Fagasa (Sita Bay and Cape Larsen) conducted in 2004 and 2007-2008. Parameters include coral, algal, or invertebrate species, coral colony diameter size, and non-living bottom type. Summaries of species identification from sites above and Ofu-Olosega Islands, Ta'u Island, Aunu'u, Manu'a, and Rose Atoll, based on historic surveys back to 1917 are also given in spreadsheets. This is a working list put together by Dr. Charles Birkeland. Fish data were collected by Dr. Alison Green on the same dates and transects and are available in a separate NODC accession.
Benthic data for corals, macroalgae, invertebrates, and non-living bottom types from Fagatele Bay National Marine Sanctuary, South Pacific Ocean, 2007-04-02 to 2008-12-31 (NCEI Accession 0068364)
공공데이터포털
Benthic transects were repeated at 12 sites around Tutuila at various depths on the reef slopes and flats. Benthic coverage categories include coral species, invertebrates, and non-living substrate type. Annual surveys took place during 2005-2009. The most detailed data are from 2008. The data were provided as spreadsheets and metadata within a PDF document, focusing on the 2008 surveys. A related data set was can be found in NCEI Accession 0066319, which was derived from surveys in Fagatele Bay National Marine Sanctuary, Pago Pago (Rainmaker and Aua), and Fagasa (Sita Bay and Cape Larsen) conducted in 2004 and 2007-2008. Parameters include coral, algal, or invertebrate species, coral colony diameter size, and non-living bottom type. Also in 0066319 are summaries of species identification from sites above and Ofu-Olosega Islands, Ta'u Island, Aunu'u, Manu'a, and Rose Atoll, based on historic surveys back to 1917 are also given in spreadsheets. This is a working list put together by Dr. Charles Birkeland.
NCCOS Assessment: U.S. West Coast Cross-Shelf Habitat Suitability Modeling of Deep-Sea Corals and Sponges, 2016-10-01 to 2020-09-30 (NCEI Accession 0276883)
공공데이터포털
This data collection contains geospatial data from models predicting the spatial distributions of deep-sea corals and sponges offshore of the continental U.S. West Coast to 1200 m depth. It includes raster datasets at 200 x 200 m spatial resolution depicting the mean of the predicted relative habitat suitability, the coefficient of variation of the predicted relative habitat suitability, the classified mean relative habitat suitability, and the ârobust highâ habitat suitability prediction for each of 31 taxa of deep-sea corals and 15 taxa of sponges and raster datasets at 200 x 200 m spatial resolution depicting the number of taxa of deep-sea corals associated with hard substrate that have âhighâ habitat suitability or ârobust highâ habitat suitability at each grid cell. The data collection also includes raster datasets at 200 x 200 m spatial resolution depicting each of the 66 spatial environmental predictor variables considered for fitting the models.
NCCOS Assessment: Southeastern U.S. Predictive Modeling of Deep-Sea Corals and Hardbottom Habitats, 2016-10-01 to 2021-09-30 (NCEI Accession 0282806)
공공데이터포털
This data collection contains geospatial data from models predicting the spatial distributions of deep-sea corals (DSCs) and hardbottom habitats offshore of the southeastern U.S. It includes a database (.csv text file) containing records of occurrence (presence-absence) for DSCs with associated measures of sampling effort and bottom type from 20 datasets comprised of data from visual field surveys conducted with underwater vehicles. It also includes raster datasets at 100 x 100 m spatial resolution depicting the median and coefficient variation of the predicted occurrence (occupancy probability) for 24 taxa of DSCs (23 genera, 1 family) and hardbottom habitats. Additional raster datasets depict the median and coefficient of variation of the predicted genus richness for the 23 genera of DSCs. The data collection also includes raster datasets at 100 x 100 m spatial resolution depicting each of the 62 spatial environmental predictors considered for fitting the models. For more information, see Poti et al. (2022). The project to compile this model took place between 2016 and 2021, however the model input data range from 2001-2018 and the model output covers the same timeframe.