ACCLIP WB-57 Aircraft In-Situ Aerosol Data
공공데이터포털
ACCLIP_Aerosol_AircraftInSitu_WB57_Data is the in-situ aerosol data collected during the Asian Summer Monsoon Chemical & Climate Impact Project (ACCLIP). Data from the Particle Analysis by Laser Mass Spectrometry - Next Generation (PALMS-NG), Single Particle Soot Photometer (SP2), Nucleation-Mode Aerosol Size Spectrometer (N-MASS), Printed Optical Particle Spectrometer (POPS), and the Ultra-High Sensitivity Aerosol Spectrometer (UHSAS) is featured in this collection. Data collection for this product is complete.ACCLIP is an international, multi-organizational suborbital campaign that aims to study aerosols and chemical transport that is associated with the Asian Summer Monsoon (ASM) in the Western Pacific region from 15 July 2022 to 31 August 2022. The ASM is the largest meteorological pattern in the Northern Hemisphere (NH) during the summer and is associated with persistent convection and large anticyclonic flow patterns in the upper troposphere and lower stratosphere (UTLS). This leads to significant enhancements in the UTLS of trace species that originate from pollution or biomass burning. Convection connected to the ASM occurs over South, Southeast, and East Asia, a region with complex and rapidly changing emissions due to its high population density and economic growth. Pollution that reaches the UTLS from this region can have significant effects on the climate and chemistry of the atmosphere, making it important to have an accurate representation and understanding of ASM transport, chemical, and microphysical processes for chemistry-climate models to characterize these interactions and for predicting future impacts on climate.The ACCLIP campaign is conducted by the National Aeronautics and Space Administration (NASA) and the National Center for Atmospheric Research (NCAR) with the primary goal of investigating the impacts of Asian gas and aerosol emissions on global chemistry and climate. The NASA WB-57 and NCAR G-V aircraft are outfitted with state-of-the-art sensors to accomplish this. ACCLIP seeks to address four scientific objectives related to its main goal. The first is to investigate the transport pathways of ASM uplifted air from inside of the anticyclone to the global UTLS. Another objective is to sample the chemical content of air processed in the ASM in order to quantify the role of the ASM in transporting chemically active species and short-lived climate forcing agents to the UTLS to determine their impact on stratospheric ozone chemistry and global climate. Third, information is obtained on aerosol size, mass, and chemical composition that is necessary for determining the radiative effects of the ASM to constrain models of aerosol formation and for contrasting the organic-rich ASM UTLS aerosol population with that of the background aerosols. Last, ACCLIP seeks to measure the water vapor distribution associated with the monsoon dynamical structure to evaluate transport across the tropopause and determine the role of the ASM in water vapor transport in the stratosphere.
MACPEX WB-57 Aircraft In-situ Water Data
공공데이터포털
MACPEX_Water_AircraftInSitu_WB57_Data is the in-situ water data collection during the Mid-latitude Airborne Cirrus Properties Experiment (MACPEX). Data was collected by the Harvard Water Vapor (HWV), Closed-path Laser Hygrometer (CLH), Diode Laser Hygrometer (DLH), JPL Laser Hygrometer (JLH), Unmanned Aerial System Laser Hygrometer (ULH), Fast In-situ Stratospheric Hygrometer (FISH), NOAA Chemical Ionization Mass Spectrometer (CIMS), and the Aircraft Laser Infrared Absorption Spectrometer (ALIAS). Data collection for this product is complete.The MACPEX mission was an airborne field campaign that deployed from March 18th to April 26th, 2011. MACPEX sought to investigate cirrus cloud properties and the processes that affect their impact on radiation. The campaign conducted science flights using the NASA WB-57 aircraft based out of Ellington Airfield, Texas. Science flights were focused on the central North America vicinity, with an emphasis over the Southern Great Plains atmospheric observatory (established by the Department of Energy’s (DoE) Atmospheric Radiation Measurement (ARM) user facility) site in Oklahoma. MACPEX was a joint effort between NASA, the NOAA Earth System Research Laboratory (ESRL), the National Center for Atmospheric Research (NCAR), and several U.S. universities.The WB-57 contained a comprehensive instrument payload for detailed in-situ measurements that were targeted to answer MACPEX’s four major science questions. The first science question that MACPEX explored was how prevalent the smaller crystals are in cirrus clouds, and how important they are for extinction, radiative forcing, and radiative heating. MACPEX also sought to understand how cirrus microphysical properties (particle size distribution, ice crystal habit, extinction, ice water content) are related to the dynamical forcing driving cloud formation. Researchers also investigated how cirrus microphysical properties are related to aerosol loading and composition, including the abundance of heterogeneous ice nuclei. Lastly, this campaign examined how cirrus microphysical properties evolve through the lifecycles of the clouds, and the role radiatively driven dynamical motions play.In addition to the in-situ measurements, four flights were coordinated to validate the NASA EOS/A-Train satellite observations. NOAA also launched balloon sondes and ozonesondes, which were used to acquire data about the frost point and water vapor in the atmosphere. The balloon sondes and ozonesondes also acquired pressure, temperature, and humidity data, as well as measurements regarding the ozone in the atmosphere.
ACCLIP WB-57 Meteorological and Navigational Data
공공데이터포털
ACCLIP_MetNav_AircraftInSitu_WB57_Data is the in-situ meteorology and navigational data collection during the Asian Summer Monsoon Chemical & Climate Impact Project (ACCLIP). Data from the Meteorological Measurement System (MMS) and Diode Laser Hygrometer (DLH) is featured in this collection. Data collection for this product is complete.ACCLIP is an international, multi-organizational suborbital campaign that aims to study aerosols and chemical transport that is associated with the Asian Summer Monsoon (ASM) in the Western Pacific region from 15 July 2022 to 31 August 2022. The ASM is the largest meteorological pattern in the Northern Hemisphere (NH) during the summer and is associated with persistent convection and large anticyclonic flow patterns in the upper troposphere and lower stratosphere (UTLS). This leads to significant enhancements in the UTLS of trace species that originate from pollution or biomass burning. Convection connected to the ASM occurs over South, Southeast, and East Asia, a region with complex and rapidly changing emissions due to its high population density and economic growth. Pollution that reaches the UTLS from this region can have significant effects on the climate and chemistry of the atmosphere, making it important to have an accurate representation and understanding of ASM transport, chemical, and microphysical processes for chemistry-climate models to characterize these interactions and for predicting future impacts on climate.The ACCLIP campaign is conducted by the National Aeronautics and Space Administration (NASA) and the National Center for Atmospheric Research (NCAR) with the primary goal of investigating the impacts of Asian gas and aerosol emissions on global chemistry and climate. The NASA WB-57 and NCAR G-V aircraft are outfitted with state-of-the-art sensors to accomplish this. ACCLIP seeks to address four scientific objectives related to its main goal. The first is to investigate the transport pathways of ASM uplifted air from inside of the anticyclone to the global UTLS. Another objective is to sample the chemical content of air processed in the ASM in order to quantify the role of the ASM in transporting chemically active species and short-lived climate forcing agents to the UTLS to determine their impact on stratospheric ozone chemistry and global climate. Third, information is obtained on aerosol size, mass, and chemical composition that is necessary for determining the radiative effects of the ASM to constrain models of aerosol formation and for contrasting the organic-rich ASM UTLS aerosol population with that of the background aerosols. Last, ACCLIP seeks to measure the water vapor distribution associated with the monsoon dynamical structure to evaluate transport across the tropopause and determine the role of the ASM in water vapor transport in the stratosphere.
ACCLIP WB-57 Aircraft In-situ Cloud Data
공공데이터포털
ACCLIP_Cloud_AircraftInSitu_WB57_Data is the in-situ cloud data collection during the Asian Summer Monsoon Chemical & Climate Impact Project (ACCLIP). Data from the Cloud, Aerosol, and Precipitation Spectrometer (CAPS) is featured in this collection. Data collection for this product is complete.ACCLIP is an international, multi-organizational suborbital campaign that aims to study aerosols and chemical transport that is associated with the Asian Summer Monsoon (ASM) in the Western Pacific region from 15 July 2022 to 31 August 2022. The ASM is the largest meteorological pattern in the Northern Hemisphere (NH) during the summer and is associated with persistent convection and large anticyclonic flow patterns in the upper troposphere and lower stratosphere (UTLS). This leads to significant enhancements in the UTLS of trace species that originate from pollution or biomass burning. Convection connected to the ASM occurs over South, Southeast, and East Asia, a region with complex and rapidly changing emissions due to its high population density and economic growth. Pollution that reaches the UTLS from this region can have significant effects on the climate and chemistry of the atmosphere, making it important to have an accurate representation and understanding of ASM transport, chemical, and microphysical processes for chemistry-climate models to characterize these interactions and for predicting future impacts on climate.The ACCLIP campaign is conducted by the National Aeronautics and Space Administration (NASA) and the National Center for Atmospheric Research (NCAR) with the primary goal of investigating the impacts of Asian gas and aerosol emissions on global chemistry and climate. The NASA WB-57 and NCAR G-V aircraft are outfitted with state-of-the-art sensors to accomplish this. ACCLIP seeks to address four scientific objectives related to its main goal. The first is to investigate the transport pathways of ASM uplifted air from inside of the anticyclone to the global UTLS. Another objective is to sample the chemical content of air processed in the ASM in order to quantify the role of the ASM in transporting chemically active species and short-lived climate forcing agents to the UTLS to determine their impact on stratospheric ozone chemistry and global climate. Third, information is obtained on aerosol size, mass, and chemical composition that is necessary for determining the radiative effects of the ASM to constrain models of aerosol formation and for contrasting the organic-rich ASM UTLS aerosol population with that of the background aerosols. Last, ACCLIP seeks to measure the water vapor distribution associated with the monsoon dynamical structure to evaluate transport across the tropopause and determine the role of the ASM in water vapor transport in the stratosphere.
MACPEX WB-57 Aircraft In-situ Aerosol Data
공공데이터포털
MACPEX_Aerosol_AircraftInSitu_WB57_Data is the in-situ aerosol data collected during the Mid-latitude Airborne Cirrus Properties Experiment (MACPEX). Data was collected by the Electron Microscope Ice Residual Impactor (EMIRI), Particle Analysis by Laser Mass Spectroscopy (PALMS), Single Particle Soot Photometer (SP2), Focused Cavity Aerosol Spectrometer (FCAS), FCAS II, and the Nuclei-Mode Aerosol Size Spectrometer II (NMASS II). Data collection for this product is complete.The MACPEX mission was an airborne field campaign that deployed from March 18th to April 26th, 2011. MACPEX sought to investigate cirrus cloud properties and the processes that affect their impact on radiation. The campaign conducted science flights using the NASA WB-57 aircraft based out of Ellington Airfield, Texas. Science flights were focused on the central North America vicinity, with an emphasis over the Southern Great Plains atmospheric observatory (established by the Department of Energy’s (DoE) Atmospheric Radiation Measurement (ARM) user facility) site in Oklahoma. MACPEX was a joint effort between NASA, the NOAA Earth System Research Laboratory (ESRL), the National Center for Atmospheric Research (NCAR), and several U.S. universities.The WB-57 contained a comprehensive instrument payload for detailed in-situ measurements that were targeted to answer MACPEX’s four major science questions. The first science question that MACPEX explored was how prevalent the smaller crystals are in cirrus clouds, and how important they are for extinction, radiative forcing, and radiative heating. MACPEX also sought to understand how cirrus microphysical properties (particle size distribution, ice crystal habit, extinction, ice water content) are related to the dynamical forcing driving cloud formation. Researchers also investigated how cirrus microphysical properties are related to aerosol loading and composition, including the abundance of heterogeneous ice nuclei. Lastly, this campaign examined how cirrus microphysical properties evolve through the lifecycles of the clouds, and the role radiatively driven dynamical motions play.In addition to the in-situ measurements, four flights were coordinated to validate the NASA EOS/A-Train satellite observations. NOAA also launched balloon sondes and ozonesondes, which were used to acquire data about the frost point and water vapor in the atmosphere. The balloon sondes and ozonesondes also acquired pressure, temperature, and humidity data, as well as measurements regarding the ozone in the atmosphere.
MACPEX WB-57 Aircraft In-situ Meteorology and Navigational Data
공공데이터포털
MACPEX_MetNav_AircraftInSitu_WB57_Data is the in-situ meteorology and navigational data collection during the Mid-latitude Airborne Cirrus Properties Experiment (MACPEX). Data from the Meteorological Measurement System (MMS) is featured in this collection. Data collection for this product is complete.The MACPEX mission was an airborne field campaign that deployed from March 18th to April 26th, 2011. MACPEX sought to investigate cirrus cloud properties and the processes that affect their impact on radiation. The campaign conducted science flights using the NASA WB-57 aircraft based out of Ellington Airfield, Texas. Science flights were focused on the central North America vicinity, with an emphasis over the Southern Great Plains atmospheric observatory (established by the Department of Energy’s (DoE) Atmospheric Radiation Measurement (ARM) user facility) site in Oklahoma. MACPEX was a joint effort between NASA, the NOAA Earth System Research Laboratory (ESRL), the National Center for Atmospheric Research (NCAR), and several U.S. universities.The WB-57 contained a comprehensive instrument payload for detailed in-situ measurements that were targeted to answer MACPEX’s four major science questions. The first science question that MACPEX explored was how prevalent the smaller crystals are in cirrus clouds, and how important they are for extinction, radiative forcing, and radiative heating. MACPEX also sought to understand how cirrus microphysical properties (particle size distribution, ice crystal habit, extinction, ice water content) are related to the dynamical forcing driving cloud formation. Researchers also investigated how cirrus microphysical properties are related to aerosol loading and composition, including the abundance of heterogeneous ice nuclei. Lastly, this campaign examined how cirrus microphysical properties evolve through the lifecycles of the clouds, and the role radiatively driven dynamical motions play.In addition to the in-situ measurements, four flights were coordinated to validate the NASA EOS/A-Train satellite observations. NOAA also launched balloon sondes and ozonesondes, which were used to acquire data about the frost point and water vapor in the atmosphere. The balloon sondes and ozonesondes also acquired pressure, temperature, and humidity data, as well as measurements regarding the ozone in the atmosphere.