CPEX-AW ADM-Aeolus Datasets
공공데이터포털
CPEXAW-ADM-Aeolus_1 is the ESA ADM-Aeolus Datasets for the Convective Processes Experiment - Aerosols & Winds (CPEX-AW) sub-orbital campaign. Data collection for this product is complete.The Convective Processes Experiment – Aerosols & Winds (CPEX-AW) campaign was a joint effort between the US National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA) with the primary goal of conducting a post-launch calibration and validation activities of the Atmospheric Dynamics Mission-Aeolus (ADM-AEOLUS) Earth observation wind Lidar satellite in St. Croix. CPEX-AW is a follow-on to the Convective Processes Experiment (CPEX) field campaign which took place in the summer of 2017. In addition to joint calibration/validation of ADM-AEOLUS, CPEX-AW studied the dynamics related to the Saharan Air Layer, African Easterly Waves and Jets, Tropical Easterly Jet, and deep convection in the InterTropical Convergence Zone (ITCZ). CPEX-AW science goals include:• Better understanding interactions of convective cloud systems and tropospheric winds as part of the joint NASA-ESA Aeolus Cal/Val effort over the tropical Atlantic;• Observing the vertical structure and variability of the marine boundary layer in relation to initiation and lifecycle of the convective cloud systems, convective processes (e.g., cold pools), and environmental conditions within and across the ITCZ;• Investigating how the African easterly waves and dry air and dust associated with Sahara Air Layer control the convectively suppressed and active periods of the ITCZ;• Investigating interactions of wind, aerosol, clouds, and precipitation and effects on long range dust transport and air quality over the western Atlantic.In order to successfully achieve the objectives of the campaign, NASA deployed its DC-8 aircraft equipped with an Airborne Third Generation Precipitation Radar (APR-3), Doppler Aerosol WiNd Lidar (DAWN), High Altitude Lidar Observatory (HALO), High Altitude Monolithic Microwave Integrated Circuit (MMIC) Sounding Radiometer (HAMSR), and dropsondes. This campaign aims to provide useful material to atmospheric scientists, meteorologists, lidar experts, air quality experts, professors, and students. The Atmospheric Science Data Center (ASDC) archives the dropsonde, HALO, and DAWN data products for CPEX-AW. For additional datasets please visit the Global Hydrometeorology Resource Center (GHRC).
ACCLIP WB-57 Meteorological and Navigational Data
공공데이터포털
ACCLIP_MetNav_AircraftInSitu_WB57_Data is the in-situ meteorology and navigational data collection during the Asian Summer Monsoon Chemical & Climate Impact Project (ACCLIP). Data from the Meteorological Measurement System (MMS) and Diode Laser Hygrometer (DLH) is featured in this collection. Data collection for this product is complete.ACCLIP is an international, multi-organizational suborbital campaign that aims to study aerosols and chemical transport that is associated with the Asian Summer Monsoon (ASM) in the Western Pacific region from 15 July 2022 to 31 August 2022. The ASM is the largest meteorological pattern in the Northern Hemisphere (NH) during the summer and is associated with persistent convection and large anticyclonic flow patterns in the upper troposphere and lower stratosphere (UTLS). This leads to significant enhancements in the UTLS of trace species that originate from pollution or biomass burning. Convection connected to the ASM occurs over South, Southeast, and East Asia, a region with complex and rapidly changing emissions due to its high population density and economic growth. Pollution that reaches the UTLS from this region can have significant effects on the climate and chemistry of the atmosphere, making it important to have an accurate representation and understanding of ASM transport, chemical, and microphysical processes for chemistry-climate models to characterize these interactions and for predicting future impacts on climate.The ACCLIP campaign is conducted by the National Aeronautics and Space Administration (NASA) and the National Center for Atmospheric Research (NCAR) with the primary goal of investigating the impacts of Asian gas and aerosol emissions on global chemistry and climate. The NASA WB-57 and NCAR G-V aircraft are outfitted with state-of-the-art sensors to accomplish this. ACCLIP seeks to address four scientific objectives related to its main goal. The first is to investigate the transport pathways of ASM uplifted air from inside of the anticyclone to the global UTLS. Another objective is to sample the chemical content of air processed in the ASM in order to quantify the role of the ASM in transporting chemically active species and short-lived climate forcing agents to the UTLS to determine their impact on stratospheric ozone chemistry and global climate. Third, information is obtained on aerosol size, mass, and chemical composition that is necessary for determining the radiative effects of the ASM to constrain models of aerosol formation and for contrasting the organic-rich ASM UTLS aerosol population with that of the background aerosols. Last, ACCLIP seeks to measure the water vapor distribution associated with the monsoon dynamical structure to evaluate transport across the tropopause and determine the role of the ASM in water vapor transport in the stratosphere.
TCSP AEROSONDE V1
공공데이터포털
The TCSP Aerosonde dataset consists of measurements of air temperature, pressure, and relative humidity were made on each flight using two Vaisalla RS902 sondes located under the wings of the aerosonde aircraft. A Heiltronics KT11.k6 infrared pyrometer was used to measure sea surface temperatures (SST). The TCSP Field Experiment was held during the month of July, 2005, in Costa Rica. The mission was to study the processes associated with tropical waves passing over Central America to the Pacific ocean, where they would eventually form tropical cyclones.
CERES Clouds and Radiative Swath TRMM Edition2C
공공데이터포털
CER_CRS_TRMM-PFM-VIRS_Edition2C is the Clouds and the Earth's Radiant Energy System (CERES) Clouds and Radiative Swath (CRS) Tropical Rainfall Measuring Mission (TRMM) Edition2C data product, which was collected using the CERES-proto flight model (PFM) instrument on the Tropical Rainfall Measuring Mission (TRMM) platform. Data collection for this product is complete.The CER_CRS_TRMM-PFM-VIRS_Edition2C data product is computed Top-of-Atmosphere (TOA)/surface/profile fluxes using Moderate-Resolution Imaging Spectroradiometer (MODIS) clouds and aerosols from Single Scanner Footprint (SSF) obtained from the TRMM PFM instrument. The Clouds and Radiative Swath (CRS) product contains one hour of instantaneous CERES data for a single scanner instrument. CRS contains all of the CERES SSF product data. For each CERES footprint on the SSF, the CRS also contains vertical flux profiles evaluated at four levels in the atmosphere: the surface, 500-, 70-, and 1-hPa. The CRS fluxes and cloud parameters are adjusted for consistency with a radiative transfer model, and adjusted fluxes are evaluated at the four atmospheric levels for both clear-sky and total-sky.CERES is a key Earth Observing System (EOS) program component. The CERES instruments provide radiometric measurements of the Earth's atmosphere from three broadband channels. The CERES missions follow the successful Earth Radiation Budget Experiment (ERBE) mission. The first CERES instrument, the proto-flight model (PFM), was launched on November 27, 1997, as part of the TRMM. Two CERES instruments (FM1 and FM2) were launched into polar orbit onboard the Earth Observing System (EOS) flagship Terra on December 18, 1999. Two additional CERES instruments (FM3 and FM4) were launched onboard Earth Observing System (EOS) Aqua on May 4, 2002. The CERES FM5 instrument was launched onboard the Suomi National Polar-orbiting Partnership (NPP) satellite on October 28, 2011. The newest CERES instrument (FM6) was launched onboard the Joint Polar-Orbiting Satellite System 1 (JPSS-1) satellite, now called NOAA-20, on November 18, 2017.
CPEX DAWN WIND PROFILES
공공데이터포털
During 25 May – 24 June 2017, NASA funded and conducted the Convective Processes Experiment (CPEX) which was based out of Ft. Lauderdale, FL and used a suite of instruments aboard a NASA DC-8 aircraft to investigate convective process and circulations over tropical waters. A main objective of CPEX was to obtain a comprehensive set of temperature, humidity and, particularly, wind observations in the vicinity of scattered and organized deep convection in all phases of the convective life cycle.The featured instrument of the airborne campaign was NASA’s Doppler Aerosol WiNd (DAWN) lidar but also included dropsondes, the Airborne Second Generation Precipitation Radar (APR-2), the High Altitude MMIC Sounding Radiometer (HAMSR), the Microwave Temperature and Humidity Profiler (MTHP), and the Microwave Atmospheric Sounder for Cubesat (MASC).In total, the CPEX campaign flew 16 missions over the Atlantic Ocean, Caribbean Sea and the Gulf of America and included missions investigating undisturbed conditions, scattered convection, organized convection and the environment of a tropical storm. The DAWN (and Dropsonde) wind measurement collected during CPEX have provided a unique set of wind profiles to be used in analysis and model assimilation and prediction studies. CPEX also utilized the High Definition Sounding System (HDSS) dropsonde delivery system developed by Yankee Environmental Services to drop almost 300 dropsondes to obtain additional high-resolution vertical wind profiles during most missions. These dropsondes also provided needed calibration/validation for the much newer DAWN measurements.
CPEX-AW DAWN Doppler Aerosol WiNd Lidar
공공데이터포털
CPEXAW-DAWN_DC8_1 are the Doppler Aerosol WiNd lidar (DAWN) image and NetCDF data files collected during the Convective Processes Experiment - Aerosols & Winds (CPEX-AW) onboard the DC-8 aircraft. Data collection for this product is complete.The Convective Processes Experiment – Aerosols & Winds (CPEX-AW) campaign was a joint effort between the US National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA) with the primary goal of conducting a post-launch calibration and validation activities of the Atmospheric Dynamics Mission-Aeolus (ADM-AEOLUS) Earth observation wind Lidar satellite in St. Croix. CPEX-AW is a follow-on to the Convective Processes Experiment (CPEX) field campaign which took place in the summer of 2017. In addition to joint calibration/validation of ADM-AEOLUS, CPEX-AW studied the dynamics related to the Saharan Air Layer, African Easterly Waves and Jets, Tropical Easterly Jet, and deep convection in the InterTropical Convergence Zone (ITCZ). CPEX-AW science goals include:• Better understanding interactions of convective cloud systems and tropospheric winds as part of the joint NASA-ESA Aeolus Cal/Val effort over the tropical Atlantic;• Observing the vertical structure and variability of the marine boundary layer in relation to initiation and lifecycle of the convective cloud systems, convective processes (e.g., cold pools), and environmental conditions within and across the ITCZ;• Investigating how the African easterly waves and dry air and dust associated with Sahara Air Layer control the convectively suppressed and active periods of the ITCZ;• Investigating interactions of wind, aerosol, clouds, and precipitation and effects on long range dust transport and air quality over the western Atlantic.In order to successfully achieve the objectives of the campaign, NASA deployed its DC-8 aircraft equipped with an Airborne Third Generation Precipitation Radar (APR-3), Doppler Aerosol WiNd Lidar (DAWN), High Altitude Lidar Observatory (HALO), High Altitude Monolithic Microwave Integrated Circuit (MMIC) Sounding Radiometer (HAMSR), and dropsondes. This campaign aims to provide useful material to atmospheric scientists, meteorologists, lidar experts, air quality experts, professors, and students. The Atmospheric Science Data Center (ASDC) archives the dropsonde, HALO, and DAWN data products for CPEX-AW. For additional datasets please visit the Global Hydrometeorology Resource Center (GHRC).
St. Croix Radiosondes CPEX-AW V1
공공데이터포털
The St. Croix Radiosondes CPEX-AW dataset consists of atmospheric pressure, atmospheric temperature, relative humidity, wind speed, and wind direction measurements. These measurements were taken from the DFM-09 Radiosonde instrument during the Convective Processes Experiment – Aerosols & Winds (CPEX-AW) field campaign. CPEX-AW was a joint effort between the US National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA) with the primary goal of conducting a post-launch calibration and validation activities of the Atmospheric Dynamics Mission-Aeolus (ADM-AEOLUS) Earth observation wind Lidar satellite in St. Croix, U.S. Virgin Islands. Data are available from August 19, 2021 through September 14, 2021 in netCDF and ASCII formats, with associated browse imagery in PNG format.