데이터셋 상세
미국
DISCOVER-AQ Maryland Deployment UC-12 Aircraft Remotely Sensed High Spectral Resolution Lidar (HSRL) Data
DISCOVERAQ_Maryland_AircraftRemoteSensing_UC12_HSRL_Data contains remotely sensed data collected by the High Spectral Resolution Lidar (HSRL) onboard NASA's UC-12 aircraft during the Maryland deployment of NASA's DISCOVER-AQ field study. This data product contains data for only the Maryland deployment and data collection is complete.Understanding the factors that contribute to near surface pollution is difficult using only satellite-based observations. The incorporation of surface-level measurements from aircraft and ground-based platforms provides the crucial information necessary to validate and expand upon the use of satellites in understanding near surface pollution. Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) was a four-year campaign conducted in collaboration between NASA Langley Research Center, NASA Goddard Space Flight Center, NASA Ames Research Center, and multiple universities to improve the use of satellites to monitor air quality for public health and environmental benefit. Through targeted airborne and ground-based observations, DISCOVER-AQ enabled more effective use of current and future satellites to diagnose ground level conditions influencing air quality.DISCOVER-AQ employed two NASA aircraft, the P-3B and King Air, with the P-3B completing in-situ spiral profiling of the atmosphere (aerosol properties, meteorological variables, and trace gas species). The King Air conducted both passive and active remote sensing of the atmospheric column extending below the aircraft to the surface. Data from an existing network of surface air quality monitors, AERONET sun photometers, Pandora UV/vis spectrometers and model simulations were also collected. Further, DISCOVER-AQ employed many surface monitoring sites, with measurements being made on the ground, in conjunction with the aircraft. The B200 and P-3B conducted flights in Baltimore-Washington, D.C. in 2011, Houston, TX in 2013, San Joaquin Valley, CA in 2013, and Denver, CO in 2014. These regions were targeted due to being in violation of the National Ambient Air Quality Standards (NAAQS).The first objective of DISCOVER-AQ was to determine and investigate correlations between surface measurements and satellite column observations for the trace gases ozone (O3), nitrogen dioxide (NO2), and formaldehyde (CH2O) to understand how satellite column observations can diagnose surface conditions. DISCOVER-AQ also had the objective of using surface-level measurements to understand how satellites measure diurnal variability and to understand what factors control diurnal variability. Lastly, DISCOVER-AQ aimed to explore horizontal scales of variability, such as regions with steep gradients and urban plumes.
연관 데이터
DISCOVER-AQ Texas Deployment B200 Aircraft Remotely Sensed High Spectral Resolution Lidar (HSRL-2) Data
공공데이터포털
DISCOVERAQ_Texas_AircraftRemoteSensing_B200_HSRL2_Data contains remotely sensed data collected by the High Spectral Resolution Lidar (HSRL-2) onboard NASA's UC-12 aircraft during the Texas (Houston) deployment of NASA's DISCOVER-AQ field study. This data product contains data for only the Texas deployment and data collection is complete.Understanding the factors that contribute to near surface pollution is difficult using only satellite-based observations. The incorporation of surface-level measurements from aircraft and ground-based platforms provides the crucial information necessary to validate and expand upon the use of satellites in understanding near surface pollution. Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) was a four-year campaign conducted in collaboration between NASA Langley Research Center, NASA Goddard Space Flight Center, NASA Ames Research Center, and multiple universities to improve the use of satellites to monitor air quality for public health and environmental benefit. Through targeted airborne and ground-based observations, DISCOVER-AQ enabled more effective use of current and future satellites to diagnose ground level conditions influencing air quality.DISCOVER-AQ employed two NASA aircraft, the P-3B and King Air, with the P-3B completing in-situ spiral profiling of the atmosphere (aerosol properties, meteorological variables, and trace gas species). The King Air conducted both passive and active remote sensing of the atmospheric column extending below the aircraft to the surface. Data from an existing network of surface air quality monitors, AERONET sun photometers, Pandora UV/vis spectrometers and model simulations were also collected. Further, DISCOVER-AQ employed many surface monitoring sites, with measurements being made on the ground, in conjunction with the aircraft. The B200 and P-3B conducted flights in Baltimore-Washington, D.C. in 2011, Houston, TX in 2013, San Joaquin Valley, CA in 2013, and Denver, CO in 2014. These regions were targeted due to being in violation of the National Ambient Air Quality Standards (NAAQS).The first objective of DISCOVER-AQ was to determine and investigate correlations between surface measurements and satellite column observations for the trace gases ozone (O3), nitrogen dioxide (NO2), and formaldehyde (CH2O) to understand how satellite column observations can diagnose surface conditions. DISCOVER-AQ also had the objective of using surface-level measurements to understand how satellites measure diurnal variability and to understand what factors control diurnal variability. Lastly, DISCOVER-AQ aimed to explore horizontal scales of variability, such as regions with steep gradients and urban plumes.
TRACER-AQ JSC G-V Aircraft Remotely Sensed High Spectral Resolution Lidar-2 (HSRL-2) Data
공공데이터포털
TRACERAQ_AircraftRemoteSensing_GV_HSRL2_Data is the remotely sensed High Spectral Resolution Lidar-2 (HSRL-2) data collected onboard the Johnson Space Center (JSC) Gulfstream V (G-V) aircraft during the TRacking Aerosol Convection ExpeRiment – Air Quality (TRACER-AQ) field study. Data collection is complete.The TRacking Aerosol Convection ExpeRiment – Air Quality (TRACER-AQ) campaign is a field study co-sponsored by NASA and TCEQ (Texas Commission on Environmental Quality), with partners from DOE (Department of Energy) TRacking Aerosol Convection ExpeRiment (TRACER), and several academic institutions. This synergistic effort aims to gain an updated understanding in photochemistry and meteorological impact on ozone formation in the Houston region, particularly around the Houston Ship Channel, Galveston Bay, and the Gulf of America; and provide observations for evaluating air quality models and satellite observations.The primary TRACER-AQ field observations period lasted from mid-August to late September 2021, coinciding with the peak ozone season in East Texas, with a second deployment in summer 2022 with a subset of ground-based assets. The observing system includes airborne remote sensing, mobile (boat/vehicle) laboratories, and stationary ground-based assets.The airborne component was based on the NASA Gulfstream V aircraft instrumented with GCAS (GEOCAPE Airborne Simulator) for making measurements of column NO2 and HCHO as well as a lidar system, HSRL-2 (High Spectral Resolution Lidar-2), to measure O3 and aerosol vertical profiles over the course of 12 flight days. Ground-based assets include ground-based ozone lidars from the Tropospheric Ozone Lidar Network (TOLNet), ceilometers, Pandora spectrometers, AErosol RObotic NETwork (AERONET) remote sensors, ozonesondes, and stationary and mobile laboratories of in situ air quality and meteorological observations. This coordinated observing system provides updated or unseen perspectives in spatial and temporal distribution of the key photochemical species and atmospheric structure information, particularly with a focus on the temporal evolution of observations throughout the daytime in preparation for upcoming geostationary satellite air quality observations.
DISCOVER-AQ Colorado Deployment B200 Aircraft Remotely Sensed High Spectral Resolution Lidar (HSRL-2) Data
공공데이터포털
DISCOVERAQ_Colorado_AircraftRemoteSensing_B200_HSRL-2_Data contains remotely sensed data collected by the High Spectral Resolution Lidar-2 (HSRL-2) onboard NASA's B-200 aircraft during the Colorado (Denver) deployment of NASA's DISCOVER-AQ field study. This data product contains data for only the Colorado deployment and data collection is complete.Understanding the factors that contribute to near surface pollution is difficult using only satellite-based observations. The incorporation of surface-level measurements from aircraft and ground-based platforms provides the crucial information necessary to validate and expand upon the use of satellites in understanding near surface pollution. Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) was a four-year campaign conducted in collaboration between NASA Langley Research Center, NASA Goddard Space Flight Center, NASA Ames Research Center, and multiple universities to improve the use of satellites to monitor air quality for public health and environmental benefit. Through targeted airborne and ground-based observations, DISCOVER-AQ enabled more effective use of current and future satellites to diagnose ground level conditions influencing air quality.DISCOVER-AQ employed two NASA aircraft, the P-3B and King Air, with the P-3B completing in-situ spiral profiling of the atmosphere (aerosol properties, meteorological variables, and trace gas species). The King Air conducted both passive and active remote sensing of the atmospheric column extending below the aircraft to the surface. Data from an existing network of surface air quality monitors, AERONET sun photometers, Pandora UV/vis spectrometers and model simulations were also collected. Further, DISCOVER-AQ employed many surface monitoring sites, with measurements being made on the ground, in conjunction with the aircraft. The B200 and P-3B conducted flights in Baltimore-Washington, D.C. in 2011, Houston, TX in 2013, San Joaquin Valley, CA in 2013, and Denver, CO in 2014. These regions were targeted due to being in violation of the National Ambient Air Quality Standards (NAAQS).The first objective of DISCOVER-AQ was to determine and investigate correlations between surface measurements and satellite column observations for the trace gases ozone (O3), nitrogen dioxide (NO2), and formaldehyde (CH2O) to understand how satellite column observations can diagnose surface conditions. DISCOVER-AQ also had the objective of using surface-level measurements to understand how satellites measure diurnal variability and to understand what factors control diurnal variability. Lastly, DISCOVER-AQ aimed to explore horizontal scales of variability, such as regions with steep gradients and urban plumes.
DISCOVER-AQ Maryland Deployment UC-12 Aircraft Remotely Sensed Airborne Compact Atmospheric Mapper Data
공공데이터포털
DISCOVERAQ_Maryland_AircraftRemoteSensing_UC12_ACAM_Data contains remotely sensed data collected by the Airborne Compact Atmospheric Mapper (ACAM) onboard NASA's UC-12 aircraft during the Maryland deployment of NASA's DISCOVER-AQ field study. This data product contains data for only the Maryland deployment and data collection is complete.Understanding the factors that contribute to near surface pollution is difficult using only satellite-based observations. The incorporation of surface-level measurements from aircraft and ground-based platforms provides the crucial information necessary to validate and expand upon the use of satellites in understanding near surface pollution. Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) was a four-year campaign conducted in collaboration between NASA Langley Research Center, NASA Goddard Space Flight Center, NASA Ames Research Center, and multiple universities to improve the use of satellites to monitor air quality for public health and environmental benefit. Through targeted airborne and ground-based observations, DISCOVER-AQ enabled more effective use of current and future satellites to diagnose ground level conditions influencing air quality.DISCOVER-AQ employed two NASA aircraft, the P-3B and King Air, with the P-3B completing in-situ spiral profiling of the atmosphere (aerosol properties, meteorological variables, and trace gas species). The King Air conducted both passive and active remote sensing of the atmospheric column extending below the aircraft to the surface. Data from an existing network of surface air quality monitors, AERONET sun photometers, Pandora UV/vis spectrometers and model simulations were also collected. Further, DISCOVER-AQ employed many surface monitoring sites, with measurements being made on the ground, in conjunction with the aircraft. The B200 and P-3B conducted flights in Baltimore-Washington, D.C. in 2011, Houston, TX in 2013, San Joaquin Valley, CA in 2013, and Denver, CO in 2014. These regions were targeted due to being in violation of the National Ambient Air Quality Standards (NAAQS).The first objective of DISCOVER-AQ was to determine and investigate correlations between surface measurements and satellite column observations for the trace gases ozone (O3), nitrogen dioxide (NO2), and formaldehyde (CH2O) to understand how satellite column observations can diagnose surface conditions. DISCOVER-AQ also had the objective of using surface-level measurements to understand how satellites measure diurnal variability and to understand what factors control diurnal variability. Lastly, DISCOVER-AQ aimed to explore horizontal scales of variability, such as regions with steep gradients and urban plumes.
DISCOVER-AQ California Deployment B-200 Aircraft Remotely Sensed High Spectral Resolution Lidar (HSRL-2) Data
공공데이터포털
DISCOVERAQ_California_AircraftRemoteSensing_B200_HSRL_Data contains remotely sensed data collected by the High Spectral Resolution Lidar (HSRL-2) onboard NASA's B-200 aircraft during the California (San Joaquin Valley) deployment of NASA's DISCOVER-AQ field study. This data product contains data for only the Maryland deployment and data collection is complete.Understanding the factors that contribute to near surface pollution is difficult using only satellite-based observations. The incorporation of surface-level measurements from aircraft and ground-based platforms provides the crucial information necessary to validate and expand upon the use of satellites in understanding near surface pollution. Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) was a four-year campaign conducted in collaboration between NASA Langley Research Center, NASA Goddard Space Flight Center, NASA Ames Research Center, and multiple universities to improve the use of satellites to monitor air quality for public health and environmental benefit. Through targeted airborne and ground-based observations, DISCOVER-AQ enabled more effective use of current and future satellites to diagnose ground level conditions influencing air quality.DISCOVER-AQ employed two NASA aircraft, the P-3B and King Air, with the P-3B completing in-situ spiral profiling of the atmosphere (aerosol properties, meteorological variables, and trace gas species). The King Air conducted both passive and active remote sensing of the atmospheric column extending below the aircraft to the surface. Data from an existing network of surface air quality monitors, AERONET sun photometers, Pandora UV/vis spectrometers and model simulations were also collected. Further, DISCOVER-AQ employed many surface monitoring sites, with measurements being made on the ground, in conjunction with the aircraft. The B200 and P-3B conducted flights in Baltimore-Washington, D.C. in 2011, Houston, TX in 2013, San Joaquin Valley, CA in 2013, and Denver, CO in 2014. These regions were targeted due to being in violation of the National Ambient Air Quality Standards (NAAQS).The first objective of DISCOVER-AQ was to determine and investigate correlations between surface measurements and satellite column observations for the trace gases ozone (O3), nitrogen dioxide (NO2), and formaldehyde (CH2O) to understand how satellite column observations can diagnose surface conditions. DISCOVER-AQ also had the objective of using surface-level measurements to understand how satellites measure diurnal variability and to understand what factors control diurnal variability. Lastly, DISCOVER-AQ aimed to explore horizontal scales of variability, such as regions with steep gradients and urban plumes.