데이터셋 상세
미국
ASIA-AQ DC-8 In-Situ Meteorology and Navigation Data
ASIA-AQ_MetNav_AircraftInSitu_DC8_Data is the in-situ meteorology and navigation data collected onboard the DC-8 aircraft during the Airborne and Satellite Investigation of Asian Air Quality (ASIA-AQ) campaign. Data from the Diode Laser Hygrometer (DLH) and the Meteorological Measurement System (MMS) are featured in this collection. Data collection for this product is complete.The ASIA-AQ campaign was an international cooperative field study designed to address local air quality challenges. Conducted from January-March 2024, ASIA-AQ deployed multiple aircraft to collect in situ and remote sensing measurements, along with numerous ground-based observations and modeling assessments. Data was collected over four countries including, the Philippines, Taiwan, South Korea and Thailand and flights were conducted in full partnership with local scientists and environmental agencies responsible for air quality monitoring and assessment. One of the primary goals of ASIA-AQ was to contribute improving integration of satellite observations with existing air quality ground monitoring and modeling efforts across Asia. Air quality observations from satellites are evolving with new capabilities from South Korea’s Geostationary Environment Monitoring Spectrometer (GEMS), which conducts hourly measurements to provide a new view of air quality conditions from space that complements and depends upon ground-based monitoring efforts of countries in its field of view. ASIA-AQ science goals focused on satellite validation and interpretation, emissions quantification and verification, model evaluation, aerosol chemistry, and ozone chemistry.
데이터 정보
연관 데이터
DC-8 Meteorological and Navigation Data CPEX-AW
공공데이터포털
The DC-8 Meteorological and Navigation Data CPEX-AW dataset is a subset of airborne measurements that include GPS positioning and trajectory data, aircraft orientation, and atmospheric state measurements of temperature, pressure, water vapor, and horizontal winds. These measurements were taken from the NASA DC-8 aircraft during the Convective Processes Experiment – Aerosols & Winds (CPEX-AW) field campaign. CPEX-AW was a joint effort between the US National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA) with the primary goal of conducting a post-launch calibration and validation activities of the Atmospheric Dynamics Mission-Aeolus (ADM-AEOLUS) Earth observation wind Lidar satellite in St. Croix, U.S. Virgin Islands. Data are available from August 17, 2021 through September 4, 2021 in ASCII format.
ASIA-AQ DC-8 In-Situ Aerosol Data
공공데이터포털
ASIA-AQ_Aerosol_AircraftInSitu_DC8_Data is the in-situ aerosol data collected onboard the DC-8 aircraft during the Airborne and Satellite Investigation of Asian Air Quality (ASIA-AQ) campaign. Data from the Transmission Electron Microscopy (TEM), Aerosol Mass Spectrometer (AMS), Single Particle Soot Photometer (DMT SP2), Ultra-High Sensitivity Aerosol Spectrometer (DMT UHSAS), Scanning Mobility Particle Sizer (SMPS), and the TSI-3563 Nephelometer are featured in this collection. Data collection for this product is complete.The ASIA-AQ campaign was an international cooperative field study designed to address local air quality challenges. Conducted from January-March 2024, ASIA-AQ deployed multiple aircraft to collect in situ and remote sensing measurements, along with numerous ground-based observations and modeling assessments. Data was collected over four countries including, the Philippines, Taiwan, South Korea and Thailand and flights were conducted in full partnership with local scientists and environmental agencies responsible for air quality monitoring and assessment. One of the primary goals of ASIA-AQ was to contribute improving integration of satellite observations with existing air quality ground monitoring and modeling efforts across Asia. Air quality observations from satellites are evolving with new capabilities from South Korea’s Geostationary Environment Monitoring Spectrometer (GEMS), which conducts hourly measurements to provide a new view of air quality conditions from space that complements and depends upon ground-based monitoring efforts of countries in its field of view. ASIA-AQ science goals focused on satellite validation and interpretation, emissions quantification and verification, model evaluation, aerosol chemistry, and ozone chemistry.
PEM West A In-Situ DC-8 Meteorology and Navigation Data
공공데이터포털
PEM-West-A_MetNav_AircraftInSitu_DC8_Data is the in situ meteorology and navigation data collected onboard the DC-8 aircraft during the Pacific Exploratory Mission (PEM) West A suborbital campaign. Data from the DC-8 Data Acquisition and Distribution System is featured in this collection. Data collection for this product is complete.During 1983-2001, NASA conducted a collection of field campaigns as a part of the Global Tropospheric Experiment (GTE) for developing advanced instrumentation to quantify atmospheric trace gases’ sources, sinks, and distribution. Among those was PEM, which intended to improve the scientific understanding of human influence on tropospheric chemistry. Part of the PEM field campaigns (PEM-West) were conducted over the northwestern Pacific region, considered the only major region in the northern hemisphere that is “relatively” free from direct anthropogenic influences. PEM-West was a part of the East Asian/North Pacific Regional Study (APARE). The overarching objectives of PEM-West were 1) to investigate the atmospheric chemistry of ozone (O3) and its precursors over the northwestern Pacific, including the examination of their natural budgets as well as the impact of anthropogenic sources; and 2) to investigate the atmospheric sulfur cycle over the region with emphasis on the relative importance and influence of continental vs marine sulfur sources. The two phases of PEM-West were conducted during differing seasons due to contrasting tropospheric outflow from Asia. The first phase, PEM-West A, was conducted over the western Pacific region off the eastern coast of Asia from September-October 1991, a season characterized by the predominance of flow from mid-Pacific regions. The second phase, PEM-West B, was conducted from February-March 1994, a period characterized by maximum air mass outflow. To accomplish its objectives, the PEM-West campaign deployed the NASA DC-8 aircraft across the northwestern Pacific to gather latitudinal, longitudinal, and vertical profile sampling, as well as extensive sampling in both the marine boundary layer and free troposphere. The aircraft was equipped with a comprehensive suite of in-situ instrument packages for characterization of photochemical precursors, intermediate products, and airmass tracers, including O3, nitric oxide (NO), peroxyacetyl nitrate (PAN), nitrogen oxides (NOy), nonmethane hydrocarbons (NMHCs), hydrogen peroxide (H2O2), acetic acid (CH3OOH), carbon monoxide (CO), and formaldehyde (CH2O). Collectively, these measurements enabled the analyses of the photochemical production/destruction of O3 and the distribution of precursor species. In addition, the DC-8 was equipped with instruments for collecting sulfur measurements, including dimethyl sulfide (DMS), carbonyl sulfide (COS), sulfur dioxide (SO2), and carbon disulfide (CS2). Instruments that collected aerosol composition and microphysical properties were also aboard the DC-8. Both missions deployed a Differential Absorption Lidar (DIAL) system for measurements of O3 vertical profiles above and below the aircraft. One highlight of the project was that flight nine of PEM-West A flew over Typhoon Mireille while it made landfall on the coast of Japan. This allowed for a flight by the DC-8 to study the role of typhoons in the transport of trace gases. Detailed descriptions related to the motivation, implementation, and instrument payloads are available in the PEM-West A overview paper and the PEM-West B overview paper. A collection of the publications based on PEM-West A and B observation are available in the Journal of Geophysical Research special issues: Pacific Exploratory Mission-West Phase A and Pacific Exploratory Mission-West, Phase B (PEM-West B).
PEM West B In-Situ DC-8 Meteorology and Navigation Data
공공데이터포털
PEM-West-B_MetNav_AircraftInSitu_DC8_Data is the in situ meteorology and navigation data collected onboard the DC-8 aircraft during the Pacific Exploratory Mission (PEM) West B suborbital campaign. Data from the DC-8 Data Acquisition and Distribution System is featured in this collection. Data collection for this product is complete. During 1983-2001, NASA conducted a collection of field campaigns as a part of the Global Tropospheric Experiment (GTE) for developing advanced instrumentation to quantify atmospheric trace gases’ sources, sinks, and distribution. Among those was PEM, which intended to improve the scientific understanding of human influence on tropospheric chemistry. Part of the PEM field campaigns (PEM-West) were conducted over the northwestern Pacific region, considered the only major region in the northern hemisphere that is “relatively” free from direct anthropogenic influences. PEM-West was a part of the East Asian/North Pacific Regional Study (APARE). The overarching objectives of PEM-West were 1) to investigate the atmospheric chemistry of ozone (O3) and its precursors over the northwestern Pacific, including the examination of their natural budgets as well as the impact of anthropogenic sources; and 2) to investigate the atmospheric sulfur cycle over the region with emphasis on the relative importance and influence of continental vs marine sulfur sources. The two phases of PEM-West were conducted during differing seasons due to contrasting tropospheric outflow from Asia. The first phase, PEM-West A, was conducted over the western Pacific region off the eastern coast of Asia from September-October 1991, a season characterized by the predominance of flow from mid-Pacific regions. The second phase, PEM-West B, was conducted from February-March 1994, a period characterized by maximum air mass outflow. To accomplish its objectives, the PEM-West campaign deployed the NASA DC-8 aircraft across the northwestern Pacific to gather latitudinal, longitudinal, and vertical profile sampling, as well as extensive sampling in both the marine boundary layer and free troposphere. The aircraft was equipped with a comprehensive suite of in-situ instrument packages for characterization of photochemical precursors, intermediate products, and airmass tracers, including O3, nitric oxide (NO), peroxyacetyl nitrate (PAN), nitrogen oxides (NOy), nonmethane hydrocarbons (NMHCs), hydrogen peroxide (H2O2), acetic acid (CH3OOH), carbon monoxide (CO), and formaldehyde (CH2O). Collectively, these measurements enabled the analyses of the photochemical production/destruction of O3 and the distribution of precursor species. In addition, the DC-8 was equipped with instruments for collecting sulfur measurements, including dimethyl sulfide (DMS), carbonyl sulfide (COS), sulfur dioxide (SO2), and carbon disulfide (CS2). Instruments that collected aerosol composition and microphysical properties were also aboard the DC-8. Both missions deployed a Differential Absorption Lidar (DIAL) system for measurements of O3 vertical profiles above and below the aircraft. One highlight of the project was that flight nine of PEM-West A flew over Typhoon Mireille while it made landfall on the coast of Japan. This allowed for a flight by the DC-8 to study the role of typhoons in the transport of trace gases. Detailed descriptions related to the motivation, implementation, and instrument payloads are available in the PEM-West A overview paper and the PEM-West B overview paper. A collection of the publications based on PEM-West A and B observation are available in the Journal of Geophysical Research special issues: Pacific Exploratory Mission-West Phase A and Pacific Exploratory Mission-West, Phase B (PEM-West B).
NAAMES C-130 Navigational and Meteorological Data, Version 1
공공데이터포털
NAAMES_MetNav_AircraftInSitu_Data are in situ meteorological and navigational measurements collected onboard the C-130 aircraft during the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES). These measurements were collected from November 4, 2015 – November 29, 2015, May 11, 2016 – June 5, 2016 and August 30, 2017-September 22, 2017 over the North Atlantic Ocean. The primary objective of NAAMES was to resolve key processes controlling ocean system function, their influences on atmospheric aerosols and clouds and their implications for climate. The airborne products link local-scale processes and properties to the larger scale continuous satellite record. Data collection for this product is complete.The NASA North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) project was the first NASA Earth Venture – Suborbital mission focused on studying the coupled ocean ecosystem and atmosphere. NAAMES utilizes a combination of ship-based, airborne, autonomous sensor, and remote sensing measurements that directly link ocean ecosystem processes, emissions of ocean-generated aerosols and precursor gases, and subsequent atmospheric evolution and processing. Four deployments coincide with the seasonal cycle of phytoplankton in the North Atlantic Ocean: the Winter Transition (November 5 – December 2, 2015), the Bloom Climax (May 11 – June 5, 2016), the Deceleration Phase (August 30 – September 24, 2017), and the Acceleration Phase (March 20 – April 13, 2018). Ship-based measurements were conducted from the Woods Hole Oceanographic Institution Research Vessel Atlantis in the middle of the North Atlantic Ocean, while airborne measurements were conducted on a NASA Wallops Flight Facility C-130 Hercules that was based at St. John's International Airport, Newfoundland, Canada. Data products in the ASDC archive focus on the NAAMES atmospheric aerosol, cloud, and trace gas data from the ship and aircraft, as well as related satellite and model data subsets. While a few ocean-remote sensing data products (e.g., from the high-spectral resolution lidar) are also included in the ASDC archive, most ocean data products reside in a companion archive at SeaBass.
DC3 In-Situ NSF/NCAR GV-HIAPER Meteorological and Navigational Data
공공데이터포털
DC3_MetNav_AircraftInSitu_NSF-GV-HIAPER_Data are in-situ meteorological and navigational data collected onboard the NSF/NCAR GV-HIAPER aircraft during the Deep Convective Clouds and Chemistry (DC3) field campaign. Data collection for this product is complete.The Deep Convective Clouds and Chemistry (DC3) field campaign sought to understand the dynamical, physical, and lightning processes of deep, mid-latitude continental convective clouds and to define the impact of these clouds on upper tropospheric composition and chemistry. DC3 was conducted from May to June 2012 with a base location of Salina, Kansas. Observations were conducted in northeastern Colorado, west Texas to central Oklahoma, and northern Alabama in order to provide a wide geographic sample of storm types and boundary layer compositions, as well as to sample convection.DC3 had two primary science objectives. The first was to investigate storm dynamics and physics, lightning and its production of nitrogen oxides, cloud hydrometeor effects on wet deposition of species, surface emission variability, and chemistry in anvil clouds. Observations related to this objective focused on the early stages of active convection. The second objective was to investigate changes in upper tropospheric chemistry and composition after active convection. Observations related to this objective focused on the 12-48 hours following convection. This objective also served to explore seasonal change of upper tropospheric chemistry.In addition to using the NSF/NCAR Gulfstream-V (GV) aircraft, the NASA DC-8 was used during DC3 to provide in-situ measurements of the convective storm inflow and remotely-sensed measurements used for flight planning and column characterization. DC3 utilized ground-based radar networks spread across its observation area to measure the physical and kinematic characteristics of storms. Additional sampling strategies relied on lightning mapping arrays, radiosondes, and precipitation collection. Lastly, DC3 used data collected from various satellite instruments to achieve its goals, focusing on measurements from CALIOP onboard CALIPSO and CPL onboard CloudSat. In addition to providing an extensive set of data related to deep, mid-latitude continental convective clouds and analyzing their impacts on upper tropospheric composition and chemistry, DC3 improved models used to predict convective transport. DC3 improved knowledge of convection and chemistry, and provided information necessary to understanding the processes relating to ozone in the upper troposphere.
ACCLIP WB-57 Meteorological and Navigational Data
공공데이터포털
ACCLIP_MetNav_AircraftInSitu_WB57_Data is the in-situ meteorology and navigational data collection during the Asian Summer Monsoon Chemical & Climate Impact Project (ACCLIP). Data from the Meteorological Measurement System (MMS) and Diode Laser Hygrometer (DLH) is featured in this collection. Data collection for this product is complete.ACCLIP is an international, multi-organizational suborbital campaign that aims to study aerosols and chemical transport that is associated with the Asian Summer Monsoon (ASM) in the Western Pacific region from 15 July 2022 to 31 August 2022. The ASM is the largest meteorological pattern in the Northern Hemisphere (NH) during the summer and is associated with persistent convection and large anticyclonic flow patterns in the upper troposphere and lower stratosphere (UTLS). This leads to significant enhancements in the UTLS of trace species that originate from pollution or biomass burning. Convection connected to the ASM occurs over South, Southeast, and East Asia, a region with complex and rapidly changing emissions due to its high population density and economic growth. Pollution that reaches the UTLS from this region can have significant effects on the climate and chemistry of the atmosphere, making it important to have an accurate representation and understanding of ASM transport, chemical, and microphysical processes for chemistry-climate models to characterize these interactions and for predicting future impacts on climate.The ACCLIP campaign is conducted by the National Aeronautics and Space Administration (NASA) and the National Center for Atmospheric Research (NCAR) with the primary goal of investigating the impacts of Asian gas and aerosol emissions on global chemistry and climate. The NASA WB-57 and NCAR G-V aircraft are outfitted with state-of-the-art sensors to accomplish this. ACCLIP seeks to address four scientific objectives related to its main goal. The first is to investigate the transport pathways of ASM uplifted air from inside of the anticyclone to the global UTLS. Another objective is to sample the chemical content of air processed in the ASM in order to quantify the role of the ASM in transporting chemically active species and short-lived climate forcing agents to the UTLS to determine their impact on stratospheric ozone chemistry and global climate. Third, information is obtained on aerosol size, mass, and chemical composition that is necessary for determining the radiative effects of the ASM to constrain models of aerosol formation and for contrasting the organic-rich ASM UTLS aerosol population with that of the background aerosols. Last, ACCLIP seeks to measure the water vapor distribution associated with the monsoon dynamical structure to evaluate transport across the tropopause and determine the role of the ASM in water vapor transport in the stratosphere.
FIREX-AQ DC8 In-Situ Meteorological and Navigational Data
공공데이터포털
FIREXAQ_MetNav_AircraftInSitu_DC8_Data are in-situ meteorological and navigational data collected onboard the DC-8 aircraft during FIREX-AQ. This product features the navigational information for the DC-8 aircraft, along with data collected by the MMS, LGR, and DLH. Data collection for this product is complete. Completed during summer 2019, FIREX-AQ utilized a combination of instrumented airplanes, satellites, and ground-based instrumentation. Detailed fire plume sampling was carried out by the NASA DC-8 aircraft, which had a comprehensive instrument payload capable of measuring over 200 trace gas species, as well as aerosol microphysical, optical, and chemical properties. The DC-8 aircraft completed 23 science flights, including 15 flights from Boise, Idaho and 8 flights from Salina, Kansas. NASA’s ER-2 completed 11 flights, partially in support of the FIREX-AQ effort. The ER-2 payload was made up of 8 satellite analog instruments and provided critical fire information, including fire temperature, fire plume heights, and vegetation/soil albedo information. NOAA provided the NOAA-CHEM Twin Otter and the NOAA-MET Twin Otter aircraft to measure chemical processing in the lofted plumes of Western wildfires. The NOAA-CHEM Twin Otter focused on nighttime plume chemistry, from which data is archived at the NASA Atmospheric Science Data Center (ASDC). The NOAA-MET Twin Otter collected measurements of air movements at fire boundaries with the goal of understanding the local weather impacts of fires and the movement patterns of fires. NOAA-MET Twin Otter data will be archived at the ASDC in the future. Additionally, a ground-based station in McCall, Idaho and several mobile laboratories provided in-situ measurements of aerosol microphysical and optical properties, aerosol chemical compositions, and trace gas species. The Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) campaign was a NOAA/NASA interagency intensive study of North American fires to gain an understanding on the integrated impact of the fire emissions on the tropospheric chemistry and composition and to assess the satellite’s capability for detecting fires and estimating fire emissions. The overarching goal of FIREX-AQ was to provide measurements of trace gas and aerosol emissions for wildfires and prescribed fires in great detail, relate them to fuel and fire conditions at the point of emission, characterize the conditions relating to plume rise, and follow plumes downwind to understand chemical transformation and air quality impacts.
DC3 In-Situ DLR Falcon Meteorological and Navigational Data
공공데이터포털
DC3_MetNav_AircraftInSitu_DLR-Falcon_Data are meteorological and navigational data collected onboard the DLR Falcon aircraft during the Deep Convective Clouds and Chemistry (DC3) field campaign. Data collection for this product is complete.The Deep Convective Clouds and Chemistry (DC3) field campaign sought to understand the dynamical, physical, and lightning processes of deep, mid-latitude continental convective clouds and to define the impact of these clouds on upper tropospheric composition and chemistry. DC3 was conducted from May to June 2012 with a base location of Salina, Kansas. Observations were conducted in northeastern Colorado, west Texas to central Oklahoma, and northern Alabama in order to provide a wide geographic sample of storm types and boundary layer compositions, as well as to sample convection.DC3 had two primary science objectives. The first was to investigate storm dynamics and physics, lightning and its production of nitrogen oxides, cloud hydrometeor effects on wet deposition of species, surface emission variability, and chemistry in anvil clouds. Observations related to this objective focused on the early stages of active convection. The second objective was to investigate changes in upper tropospheric chemistry and composition after active convection. Observations related to this objective focused on the 12-48 hours following convection. This objective also served to explore seasonal change of upper tropospheric chemistry.In addition to using the NSF/NCAR Gulfstream-V (GV) aircraft, the NASA DC-8 was used during DC3 to provide in-situ measurements of the convective storm inflow and remotely-sensed measurements used for flight planning and column characterization. DC3 utilized ground-based radar networks spread across its observation area to measure the physical and kinematic characteristics of storms. Additional sampling strategies relied on lightning mapping arrays, radiosondes, and precipitation collection. Lastly, DC3 used data collected from various satellite instruments to achieve its goals, focusing on measurements from CALIOP onboard CALIPSO and CPL onboard CloudSat. In addition to providing an extensive set of data related to deep, mid-latitude continental convective clouds and analyzing their impacts on upper tropospheric composition and chemistry, DC3 improved models used to predict convective transport. DC3 improved knowledge of convection and chemistry, and provided information necessary to understanding the processes relating to ozone in the upper troposphere.
TRACE-P In Situ DC-8 Meteorology and Navigation Data
공공데이터포털
TRACE-P_MetNav_AircraftInSitu_DC8_Data is the in situ meteorology and navigation data collected onboard the DC-8 aircraft during the Transport and Chemical Evolution over the Pacific (TRACE-P) suborbital campaign. Data from the Diode Laser Hygrometer (DLH) instrument is featured in this collection. Data collection for this product is complete.The NASA TRACE-P mission was a part of NASA’s Global Tropospheric Experiment (GTE) – an assemblage of missions conducted from 1983-2001 with various research goals and objectives. TRACE-P was a multi-organizational campaign with NASA, the National Center for Atmospheric Research (NCAR), and several US universities. TRACE-P deployed its payloads in the Pacific between the months of March and April 2001 with the goal of studying the air chemistry emerging from Asia to the western Pacific. Along with this, TRACE-P had the objective studying the chemical evolution of the air as it moved away from Asia.  In order to accomplish its goals, the NASA DC-8 aircraft and NASA P-3B aircraft were deployed, each equipped with various instrumentation. TRACE-P also relied on ground sites, and satellites to collect data. The DC-8 aircraft was equipped with 19 instruments in total while the P-3B boasted 21 total instruments. Some instruments on the DC-8 include the Nephelometer, the GCMS, the Nitric Oxide Chemiluminescence, the Differential Absorption Lidar (DIAL), and the Dual Channel Collectors and Fluorometers, HPLC. The Nephelometer was utilized to gather data on various wavelengths including aerosol scattering (450, 550, 700nm), aerosol absorption (565nm), equivalent BC mass, and air density ratio. The GCMS was responsible for capturing a multitude of compounds in the atmosphere, some of which include CH4, CH3CHO, CH3Br, CH3Cl, CHBr3, and C2H6O. DIAL was used for a variety of measurements, some of which include aerosol wavelength dependence (1064/587nm), IR aerosol scattering ratio (1064nm), tropopause heights and ozone columns, visible aerosol scattering ratio, composite tropospheric ozone cross-sections, and visible aerosol depolarization. Finally, the Dual Channel Collectors and Fluorometers, HPLC collected data on H2O2, CH3OOH, and CH2O in the atmosphere. The P-3B aircraft was equipped with various instruments for TRACE-P, some of which include the MSA/CIMS, the Non-dispersive IR Spectrometer, the PILS-Ion Chromatograph, and the Condensation particle counter and Pulse Height Analysis (PHA). The MSA/CIMS measured OH, H2SO4, MSA, and HNO3. The Non-dispersive IR Spectrometer took measurements on CO2 in the atmosphere. The PILS-Ion Chromatograph recorded measurements of compounds and elements in the atmosphere, including sodium, calcium, potassium, magnesium, chloride, NH4, NO3, and SO4. Finally, the Condensation particle counter and PHA was used to gather data on total UCN, UCN 3-8nm, and UCN 3-4nm. Along with the aircrafts, ground stations measured air quality from China along with C2H2, C2H6, CO, and HCN. Finally, satellites imagery was used to collect a multitude of data, some of the uses were to observe the history of lightning flashes, SeaWiFS cloud imagery, 8-day exposure to TOMS aerosols, and SeaWiFS aerosol optical thickness. The imagery was used to best aid in planning for the aircraft deployment.