데이터셋 상세
미국
BackscatterA [USGS SWATH]--Monterey Canyon and Vicinity, California
This part of DS 781 presents data for the acoustic-backscatter map of Monterey Canyon and Vicinity map area, California. Backscatter data are provided as separate grids depending on mapping system and processing method. These metadata describe acoustic-backscatter data collected and processed by the U.S. Geological Survey. The raster data files are included in "BackscatterA_USGS_SWATH_MontereyCanyon.zip," which is accessible from https://doi.org/10.3133/ds781. These data accompany the pamphlet and map sheets of Dartnell, P., Maier, K.L., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson, S.Y., Hartwell, S.R., Cochrane, G.R., Ritchie, A.C., Finlayson, D.P., Kvitek, R.G., Sliter, R.W., Greene, H.G., Davenport, C.W., Endris, C.A., and Krigsman, L.M. (P. Dartnell and S.A. Cochran, eds.), 2016, California State Waters Map Series—Monterey Canyon and Vicinity, California: U.S. Geological Survey Open-File Report 2016–1072, 48 p., 10 sheets, scale 1:24,000, https://doi.org/10.3133/ofr20161072. The acoustic-backscatter map of Monterey Canyon and Vicinity, California, was generated from acoustic-backscatter data collected by the U.S. Geological Survey (USGS), by Monterey Bay Aquarium Research Institute (MBARI), and by California State University, Monterey Bay (CSUMB). Mapping for the entire map area was completed between 1998 and 2014 using a combination of 30-kHz Simrad EM-300 and 200-kHz/400-kHz Reson 7125 multibeam echosounders, as well as 234-kHz and 468-kHz SEA SWATHplus bathymetric sidescan-sonar systems. The USGS mapping was completed in 2009 and 2014. Within the final imagery, brighter tones indicate higher backscatter intensity, and darker tones indicate lower backscatter intensity. The intensity represents a complex interaction between the acoustic pulse and the seafloor, as well as characteristics within the shallow subsurface, providing a general indication of seafloor texture and composition. Backscatter intensity depends on the acoustic source level; the frequency used to image the seafloor; the grazing angle; the composition and character of the seafloor, including grain size, water content, bulk density, and seafloor roughness; and some biological cover. Harder and rougher bottom types such as rocky outcrops or coarse sediment typically return stronger intensities (high backscatter, lighter tones), whereas softer bottom types such as fine sediment return weaker intensities (low backscatter, darker tones).
데이터 정보
연관 데이터
BackscatterC [7125]--Monterey Canyon and Vicinity, California
공공데이터포털
This part of DS 781 presents data for the acoustic-backscatter map of Monterey Canyon and Vicinity map area, California. Backscatter data are provided as separate grids depending on mapping system and processing method. These metadata describe acoustic-backscatter data collected by California State University, Monterey Bay and processed by the U.S. Geological Survey. The raster data files are included in "BackscatterC_7125_MontereyCanyon.zip," which is accessible from https://doi.org/10.5066/F7XD0ZQ4. These data accompany the pamphlet and map sheets of Dartnell, P., Maier, K.L., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson, S.Y., Hartwell, S.R., Cochrane, G.R., Ritchie, A.C., Finlayson, D.P., Kvitek, R.G., Sliter, R.W., Greene, H.G., Davenport, C.W., Endris, C.A., and Krigsman, L.M. (P. Dartnell and S.A. Cochran, eds.), 2016, California State Waters Map Series—Monterey Canyon and Vicinity, California: U.S. Geological Survey Open-File Report 2016–1072, 48 p., 10 sheets, scale 1:24,000, https://doi.org/10.3133/ofr20161072. The acoustic-backscatter map of Monterey Canyon and Vicinity, California, were generated from acoustic-backscatter data collected by the U.S. Geological Survey (USGS), by Monterey Bay Aquarium Research Institute (MBARI), and by California State University, Monterey Bay (CSUMB). Mapping for the entire map area was completed between 1998 and 2014 using a combination of 30-kHz Simrad EM-300 and 200-kHz/400-kHz Reson 7125 multibeam echosounders, as well as 234-kHz and 468-kHz SEA SWATHplus bathymetric sidescan-sonar systems. The CSUMB mapping missions were completed in 2008 and 2009. Within the final imagery, brighter tones indicate higher backscatter intensity, and darker tones indicate lower backscatter intensity. The intensity represents a complex interaction between the acoustic pulse and the seafloor, as well as characteristics within the shallow subsurface, providing a general indication of seafloor texture and composition. Backscatter intensity depends on the acoustic source level; the frequency used to image the seafloor; the grazing angle; the composition and character of the seafloor, including grain size, water content, bulk density, and seafloor roughness; and some biological cover. Harder and rougher bottom types such as rocky outcrops or coarse sediment typically return stronger intensities (high backscatter, lighter tones), whereas softer bottom types such as fine sediment return weaker intensities (low backscatter, darker tones).
BackscatterB [EM300]--Monterey Canyon and Vicinity, California
공공데이터포털
This part of DS 781 presents data for the acoustic-backscatter map of Monterey Canyon and Vicinity map area, California. Backscatter data are provided as separate grids depending on mapping system and processing method. These metadata describe acoustic-backscatter data collected by Monterey Bay Aquarium Research Institute (MBARI) and processed by the U.S. Geological Survey. The raster data files are included in "BackscatterB_EM300_MontereyCanyon.zip," which is accessible from https://doi.org/10.3133/ds781. These data accompany the pamphlet and map sheets of Dartnell, P., Maier, K.L., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson, S.Y., Hartwell, S.R., Cochrane, G.R., Ritchie, A.C., Finlayson, D.P., Kvitek, R.G., Sliter, R.W., Greene, H.G., Davenport, C.W., Endris, C.A., and Krigsman, L.M. (P. Dartnell and S.A. Cochran, eds.), 2016, California State Waters Map Series—Monterey Canyon and Vicinity, California: U.S. Geological Survey Open-File Report 2016–1072, 48 p., 10 sheets, scale 1:24,000, https://doi.org/10.3133/ofr20161072. The acoustic-backscatter map of Monterey Canyon and Vicinity, California, were generated from acoustic-backscatter data collected by the U.S. Geological Survey (USGS), by Monterey Bay Aquarium Research Institute (MBARI), and by California State University, Monterey Bay (CSUMB). Mapping for the entire map area was completed between 1998 and 2014 using a combination of 30-kHz Simrad EM-300 and 200-kHz/400-kHz Reson 7125 multibeam echosounders, as well as 234-kHz and 468-kHz SEA SWATHplus bathymetric sidescan-sonar systems. The MBARI mapping was completed in 1998, the data were downloaded and reprocessed by the USGS in 2014. Within the final imagery, brighter tones indicate higher backscatter intensity, and darker tones indicate lower backscatter intensity. The intensity represents a complex interaction between the acoustic pulse and the seafloor, as well as characteristics within the shallow subsurface, providing a general indication of seafloor texture and composition. Backscatter intensity depends on the acoustic source level; the frequency used to image the seafloor; the grazing angle; the composition and character of the seafloor, including grain size, water content, bulk density, and seafloor roughness; and some biological cover. Harder and rougher bottom types such as rocky outcrops or coarse sediment typically return stronger intensities (high backscatter, lighter tones), whereas softer bottom types such as fine sediment return weaker intensities (low backscatter, darker tones).
BackscatterD [CSUMB Swath]--Monterey Canyon and Vicinity, California
공공데이터포털
This part of DS 781 presents data for the acoustic-backscatter map of Monterey Canyon and Vicinity map area, California. Backscatter data are provided as separate grids depending on mapping system and processing method. These metadata describe acoustic-backscatter data collected by California State University, Monterey Bay and processed by the U.S. Geological Survey. The raster data files are included in "BackscatterD_CSUMB_SWATH_MontereyCanyon.zip," which is accessible from https://doi.org/10.5066/F7XD0ZQ4. These data accompany the pamphlet and map sheets of Dartnell, P., Maier, K.L., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson, S.Y., Hartwell, S.R., Cochrane, G.R., Ritchie, A.C., Finlayson, D.P., Kvitek, R.G., Sliter, R.W., Greene, H.G., Davenport, C.W., Endris, C.A., and Krigsman, L.M. (P. Dartnell and S.A. Cochran, eds.), 2016, California State Waters Map Series—Monterey Canyon and Vicinity, California: U.S. Geological Survey Open-File Report 2016–1072, 48 p., 10 sheets, scale 1:24,000, https://doi.org/10.3133/ofr20161072. The acoustic-backscatter map of Monterey Canyon and Vicinity, California, were generated from acoustic-backscatter data collected by the U.S. Geological Survey (USGS), by Monterey Bay Aquarium Research Institute (MBARI), and by California State University, Monterey Bay (CSUMB). Mapping for the entire map area was completed between 1998 and 2014 using a combination of 30-kHz Simrad EM-300 and 200-kHz/400-kHz Reson 7125 multibeam echosounders, as well as 234-kHz and 468-kHz SEA SWATHplus bathymetric sidescan-sonar systems. The CSUMB mapping missions were completed in 2008 and 2009. Within the final imagery, brighter tones indicate higher backscatter intensity, and darker tones indicate lower backscatter intensity. The intensity represents a complex interaction between the acoustic pulse and the seafloor, as well as characteristics within the shallow subsurface, providing a general indication of seafloor texture and composition. Backscatter intensity depends on the acoustic source level; the frequency used to image the seafloor; the grazing angle; the composition and character of the seafloor, including grain size, water content, bulk density, and seafloor roughness; and some biological cover. Harder and rougher bottom types such as rocky outcrops or coarse sediment typically return stronger intensities (high backscatter, lighter tones), whereas softer bottom types such as fine sediment return weaker intensities (low backscatter, darker tones).
BackscatterA [8101]--Offshore Pacifica, California
공공데이터포털
This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Pacifica map area, California. Backscatter data are provided as two separate grids depending on mapping system. The raster data files are included in "BackscatterA_8101_OffshorePacifica.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshorePacifica/data_catalog_OffshorePacifica.html. These data accompany the pamphlet and map sheets of Edwards, B.D., Phillips, E.L., Dartnell, P., Greene, H.G., Bretz, C.K., Kvitek, R.G., Hartwell, S.R., Johnson, S.Y., Cochrane, G.R., Dieter, B.E., Sliter, R.W., Ross, S.L., Golden, N.E., Watt, J.T., Chin, J.L., Erdey, M.D., Krigsman, L.M., Manson, M.W., and Endris, C.A. (S.A. Cochran and B.D. Edwards, eds.), 2014, California State Waters Map Series—Offshore of Pacifica, California: U.S. Geological Survey Open-File Report 2014–1260, pamphlet 38 p., 10 sheets, scale 1:24,000, https://doi.org/10.3133/ofr20141260. The acoustic-backscatter map of the Offshore of Pacifica, California was generated from backscatter data collected by Fugro Pelagos and by California State University, Monterey Bay (CSUMB). Mapping was completed between 2005 and 2007, using a combination of 400-kHz Reson 7125 and 244-kHz Reson 8101 multibeam echosounders. Within the final imagery, brighter tones indicate higher backscatter intensity, and darker tones indicate lower backscatter intensity. The intensity represents a complex interaction between the acoustic pulse and the seafloor, as well as characteristics within the shallow subsurface, providing a general indication of seafloor texture and composition. Backscatter intensity depends on the acoustic source level; the frequency used to image the seafloor; the grazing angle; the composition and character of the seafloor, including grain size, water content, bulk density, and seafloor roughness; and some biological cover. Harder and rougher bottom types such as rocky outcrops or coarse sediment typically return stronger intensities (high backscatter, lighter tones), whereas softer bottom types such as fine sediment return weaker intensities (low backscatter, darker tones).
Backscatter A [CSUMB]--Hueneme Canyon and Vicinity, California
공공데이터포털
This part of DS 781 presents data for part of the acoustic-backscatter map of the Hueneme Canyon and Vicinity map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterA_CSUMB_HuenemeCanyon.zip," which is accessible from https://pubs.usgs.gov/ds/781/HuenemeCanyon/data_catalog_HuenemeCanyon.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Clahan, K.B., Sliter, R.W., Wong, F.L., Yoklavich, M.M., and Normark, W.R. (S.Y. Johnson, ed.), 2012, California State Waters Map Series—-Hueneme Canyon and Vicinity, California: U.S. Geological Survey Scientific Investigations Map 3225, 41 p., 12 sheets, scale 1:24,000, https://pubs.usgs.gov/sim/3225/. The acoustic-backscatter map of Hueneme Canyon and Vicinity map area, California, was generated from backscatter data collected by California State University, Monterey Bay, Seafloor Mapping Lab (CSUMB) and by the U.S. Geological Survey (USGS). This metadata file describes the acoustic-backscatter data collected by CSUMB. See https://pubs.usgs.gov/ds/781/HuenemeCanyon/metadata/BackscatterB_USGS_HuenemeCanyon_metadata.txt for a description of the acoustic-backscatter data collected by the USGS. The majority of the acoustic-backscatter data within the Hueneme Canyon and vicinity, California, map area was collected by CSUMB in the summers of 2006 and 2007, using a 244-kHz Reson 8101 multibeam echosounder. Within the acoustic-backscatter imagery, brighter tones indicate higher backscatter intensity, and darker tones indicate lower backscatter intensity. The intensity represents a complex interaction between the acoustic pulse and the seafloor, as well as characteristics within the shallow subsurface, providing a general indication of seafloor texture and composition. Backscatter intensity depends on the acoustic source level; the frequency used to image the seafloor; the grazing angle; the composition and character of the seafloor, including grain size, water content, bulk density, and seafloor roughness; and some biological cover. Harder and rougher bottom types such as rocky outcrops or coarse sediment typically return stronger intensities (high backscatter, lighter tones), whereas softer bottom types such as fine sediment return weaker intensities (low backscatter, darker tones).
Backscatter [SWATH]--Offshore Santa Cruz, California
공공데이터포털
This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Santa Cruz map area, California. Backscatter data are provided as a raster file included in "Backscatter_Swath_OffshoreSantaCruz.zip," which is accessible from https://doi.org/10.5066/F7TM785G. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Erdey, M.D., Golden, N.E., Greene, H.G., Dieter, B.E., Hartwell, S.R., Ritchie, A.C., Finlayson, D.P., Endris, C.A., Watt, J.T., Davenport, C.W., Sliter, R.W., Maier, K.L., and Krigsman, L.M. (G.R. Cochrane and S.A. Cochran, eds.), 2016, California State Waters Map Series—Offshore of Santa Cruz, California: U.S. Geological Survey Open-File Report 2016-1024, pamphlet 40 p., 10 sheets, scale 1:24,000, https://doi.org/10.3133/ofr20161024. The acoustic-backscatter map of the Offshore of Santa Cruz, California was generated from backscatter data collected by the U.S. Geological Survey (USGS). Mapping was completed in 2009, using a 234-kHz SWATHplus bathymetric sidescan-sonar system. Within the final imagery, brighter tones indicate higher backscatter intensity, and darker tones indicate lower backscatter intensity. The intensity represents a complex interaction between the acoustic pulse and the seafloor, as well as characteristics within the shallow subsurface, providing a general indication of seafloor texture and composition. Backscatter intensity depends on the acoustic source level; the frequency used to image the seafloor; the grazing angle; the composition and character of the seafloor, including grain size, water content, bulk density, and seafloor roughness; and some biological cover. Harder and rougher bottom types such as rocky outcrops or coarse sediment typically return stronger intensities (high backscatter, lighter tones), whereas softer bottom types such as fine sediment return weaker
Backscatter B [USGS]--Hueneme Canyon and Vicinity, California
공공데이터포털
This part of DS 781 presents data for part of the acoustic-backscatter map of the Hueneme Canyon and Vicinity map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterB_USGS_HuenemeCanyon.zip," which is accessible from https://pubs.usgs.gov/ds/781/HuenemeCanyon/data_catalog_HuenemeCanyon.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Clahan, K.B., Sliter, R.W., Wong, F.L., Yoklavich, M.M., and Normark, W.R. (S.Y. Johnson, ed.), 2012, California State Waters Map Series--Hueneme Canyon and Vicinity, California: U.S. Geological Survey Scientific Investigations Map 3225, 41 p., 12 sheets, scale 1:24,000, https://pubs.usgs.gov/sim/3225/. The acoustic-backscatter map of Hueneme Canyon and Vicinity map area, California, was generated from backscatter data collected by California State University, Monterey Bay, Seafloor Mapping Lab (CSUMB) and by the U.S. Geological Survey (USGS). This metadata file describes the acoustic-backscatter data collected by the USGS. See https://pubs.usgs.gov/ds/781/HuenemeCanyon/metadata/BackscatterA_CSUMB_HuenemeCanyon_metadata.txt for a description of the acoustic-backscatter data collected by CSUMB. The far northern part of the Hueneme Canyon and Vicinity, California map area was mapped by the USGS in 2006, using a 117-kHz SEA (AP) Ltd. SWATHplus-M phase-differencing sidescan sonar. This mapping mission collected acoustic-backscatter data from about the 10-m isobath to almost the 3-nautical-mile limit of California's State Waters. Within the acoustic-backscater imagery, brighter tones indicate higher backscatter intensity, and darker tones indicate lower backscatter intensity. The intensity represents a complex interaction between the acoustic pulse and the seafloor, as well as characteristics within the shallow subsurface, providing a general indication of seafloor texture and sediment type. Backscatter intensity depends on the acoustic source level; the frequency used to image the seafloor; the grazing angle; the composition and character of the seafloor, including grain size, water content, bulk density, and seafloor roughness; and some biological cover. Harder and rougher bottom types such as rocky outcrops or coarse sediment typically return stronger intensities (high backscatter, lighter tones), whereas softer bottom types such as fine sediment return weaker intensities (low backscatter, darker tones).
BackscatterB [7125]--Offshore Pacifica, California
공공데이터포털
This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Pacifica map area, California. Backscatter data are provided as two separate grids depending on mapping system. The raster data files are included in "Backscatter7125_OffshorePacifica.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshorePacifica/data_catalog_OffshorePacifica.html. These data accompany the pamphlet and map sheets of Edwards, B.D., Phillips, E.L., Dartnell, P., Greene, H.G., Bretz, C.K., Kvitek, R.G., Hartwell, S.R., Johnson, S.Y., Cochrane, G.R., Dieter, B.E., Sliter, R.W., Ross, S.L., Golden, N.E., Watt, J.T., Chin, J.L., Erdey, M.D., Krigsman, L.M., Manson, M.W., and Endris, C.A. (S.A. Cochran and B.D. Edwards, eds.), 2014, California State Waters Map Series—Offshore of Pacifica, California: U.S. Geological Survey Open-File Report 2014–1260, pamphlet 38 p., 10 sheets, scale 1:24,000, https://doi.org/10.3133/ofr20141260. The acoustic-backscatter map of the Offshore of Pacifica, California was generated from backscatter data collected by Fugro Pelagos and by California State University, Monterey Bay (CSUMB). Mapping was completed between 2005 and 2007, using a combination of 400-kHz Reson 7125 and 244-kHz Reson 8101 multibeam echosounders. Within the final imagery, brighter tones indicate higher backscatter intensity, and darker tones indicate lower backscatter intensity. The intensity represents a complex interaction between the acoustic pulse and the seafloor, as well as characteristics within the shallow subsurface, providing a general indication of seafloor texture and composition. Backscatter intensity depends on the acoustic source level; the frequency used to image the seafloor; the grazing angle; the composition and character of the seafloor, including grain size, water content, bulk density, and seafloor roughness; and some biological cover. Harder and rougher bottom types such as rocky outcrops or coarse sediment typically return stronger intensities (high backscatter, lighter tones), whereas softer bottom types such as fine sediment return weaker intensities (low backscatter, darker tones).
Backscatter A [CSUMB]--Offshore of Ventura, California
공공데이터포털
This part of DS 781 presents acoustic-backscatter data for the Offshore of Ventura map area, California. The raster data file is included in "BackscatterA_CSUMB_OffshoreVentura.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreVentura/data_catalog_OffshoreVentura.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Seitz, G.G., Gutierrez, C.I., Sliter, R.W., Erdey, M.D., Wong, F.L., Yoklavich, M.M., Draut, A.E., and Hart, P.E. (S.Y. Johnson and S.A. Cochran, eds.), 2013, California State Waters Map Series—Offshore of Ventura, California: U.S. Geological Survey Scientific Investigations Map 3254, pamphlet 42 p., 11 sheets, scale 1:24,000, https://doi.org/10.3133/sim3254. The acoustic-backscatter map of the Offshore of Ventura map area, California, was generated from backscatter data collected by California State University, Monterey Bay, Seafloor Mapping Lab (CSUMB) and by the U.S. Geological Survey (USGS). These metadata describe the acoustic-backscatter data collected by CSUMB and reprocessed by the USGS (see "BackscatterB_USGS_OffshoreVentura_metadata.txt" metadata for a description of the acoustic-backscatter data collected by the USGS). The majority of the acoustic-backscatter data within the Offshore of Ventura map area, California, was collected by CSUMB in the summers of 2006 and 2007, using a 244-kHz Reson 8101 multibeam echosounder. Within the final imagery, brighter tones indicate higher backscatter intensity, and darker tones indicate lower backscatter intensity. The intensity represents a complex interaction between the acoustic pulse and the seafloor, as well as characteristics within the shallow subsurface, providing a general indication of seafloor texture and sediment type. Backscatter intensity depends on the acoustic source level; the frequency used to image the seafloor; the grazing angle; the composition and character of the seafloor, including grain size, water content, bulk density, and seafloor roughness; and some biological cover. Harder and rougher bottom types such as rocky outcrops or coarse sediment typically return stronger intensities (high backscatter, lighter tones), whereas softer bottom types such as fine sediment return weaker intensities (low backscatter, darker tones).
BackscatterA [8210]--Offshore of Salt Point map area, California
공공데이터포털
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Salt Point map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "Backscatter8101_SaltPoint.zip", which are accessible from https://pubs.usgs.gov/ds/781/OffshoreSaltPoint/data_catalog_OffshoreSaltPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., Watt, J.T., Krigsman, L.M., Sliter, R.W., Lowe, E.N., and Chin, J.L. (S.Y. Johnson and S.A. Cochran, eds.), 2015, California State Waters Map Series—Offshore of Salt Point, California: U.S. Geological Survey Open-File Report 2015–1098, pamphlet 37 p., 10 sheets, scale 1:24,000, https://doi.org/10.3133/ofr20151098. The acoustic-backscatter map of the Offshore of Salt Point map area, California, was generated from backscatter data collected by California State University, Monterey Bay (CSUMB), and by Fugro Pelagos. Mapping was completed between 2007 and 2010, using a combination of 200-kHz and 400-kHz Reson 7125, and 244-kHz Reson 8101 multibeam echosounders, as well as 468-kHz SEA SWATHPlus interferometric system. These mapping missions combined to collect backscatter data from about the 10-m isobath to beyond the 3-nautical-mile limit of California State Waters. Within the acoustic-backscatter imagery, brighter tones indicate higher backscatter intensity, and darker tones indicate lower backscatter intensity. The intensity represents a complex interaction between the acoustic pulse and the seafloor, as well as characteristics within the shallow subsurface, providing a general indication of seafloor texture and composition. Backscatter intensity depends on the acoustic source level; the frequency used to image the seafloor; the grazing angle; the composition and character of the seafloor, including grain size, water content, bulk density, and seafloor roughness; and some biological cover. Harder and rougher bottom types such as rocky outcrops or coarse sediment typically return stronger intensities (high backscatter, lighter tones), whereas softer bottom types such as fine sediment return weaker intensities (low backscatter, darker tones). These data are not intended for navigational purposes.