데이터셋 상세
미국
Evapotranspiration in the Upper Klamath Basin for September 2013
The evapotranspiration (ET) datasets were created under contract for this study by the University of Idaho. A high-resolution remote sensing technique known as Mapping Evapotranspiration at High Resolution and Internalized Calibration (METRIC) was used to create estimates of the spatial distribution of ET. The METRIC technique uses thermal infrared Landsat imagery to quantify actual evapotranspiration at a 30-meter resolution that can be related to individual irrigated fields. Because evaporation uses heat energy, ground surfaces with large ET rates are left cooler as a result of ET than ground surfaces that have less ET. As a consequence, irrigated fields appear in the Landsat images as cooler than nonirrigated fields. Products produced from this study include total seasonal and total monthly (April-October) actual evapotranspiration maps for 2013.
데이터 정보
연관 데이터
Evapotranspiration in the Upper Klamath Basin for May 2013
공공데이터포털
The evapotranspiration (ET) datasets were created under contract for this study by the University of Idaho. A high-resolution remote sensing technique known as Mapping Evapotranspiration at High Resolution and Internalized Calibration (METRIC) was used to create estimates of the spatial distribution of ET. The METRIC technique uses thermal infrared Landsat imagery to quantify actual evapotranspiration at a 30-meter resolution that can be related to individual irrigated fields. Because evaporation uses heat energy, ground surfaces with large ET rates are left cooler as a result of ET than ground surfaces that have less ET. As a consequence, irrigated fields appear in the Landsat images as cooler than nonirrigated fields. Products produced from this study include total seasonal and total monthly (April-October) actual evapotranspiration maps for 2013.
Evapotranspiration in the Upper Klamath Basin for April 2013
공공데이터포털
The evapotranspiration (ET) datasets were created under contract for this study by the University of Idaho. A high-resolution remote sensing technique known as Mapping Evapotranspiration at High Resolution and Internalized Calibration (METRIC) was used to create estimates of the spatial distribution of ET. The METRIC technique uses thermal infrared Landsat imagery to quantify actual evapotranspiration at a 30-meter resolution that can be related to individual irrigated fields. Because evaporation uses heat energy, ground surfaces with large ET rates are left cooler as a result of ET than ground surfaces that have less ET. As a consequence, irrigated fields appear in the Landsat images as cooler than nonirrigated fields. Products produced from this study include total seasonal and total monthly (April-October) actual evapotranspiration maps for 2013.
Evapotranspiration in the Upper Klamath Basin for July 2013
공공데이터포털
The evapotranspiration (ET) datasets were created under contract for this study by the University of Idaho. A high-resolution remote sensing technique known as Mapping Evapotranspiration at High Resolution and Internalized Calibration (METRIC) was used to create estimates of the spatial distribution of ET. The METRIC technique uses thermal infrared Landsat imagery to quantify actual evapotranspiration at a 30-meter resolution that can be related to individual irrigated fields. Because evaporation uses heat energy, ground surfaces with large ET rates are left cooler as a result of ET than ground surfaces that have less ET. As a consequence, irrigated fields appear in the Landsat images as cooler than nonirrigated fields. Products produced from this study include total seasonal and total monthly (April-October) actual evapotranspiration maps for 2013.
Evapotranspiration in the Upper Klamath Basin for August 2013
공공데이터포털
The evapotranspiration (ET) datasets were created under contract for this study by the University of Idaho. A high-resolution remote sensing technique known as Mapping Evapotranspiration at High Resolution and Internalized Calibration (METRIC) was used to create estimates of the spatial distribution of ET. The METRIC technique uses thermal infrared Landsat imagery to quantify actual evapotranspiration at a 30-meter resolution that can be related to individual irrigated fields. Because evaporation uses heat energy, ground surfaces with large ET rates are left cooler as a result of ET than ground surfaces that have less ET. As a consequence, irrigated fields appear in the Landsat images as cooler than nonirrigated fields. Products produced from this study include total seasonal and total monthly (April-October) actual evapotranspiration maps for 2013.
Evapotranspiration in the Upper Klamath Basin for October 2013
공공데이터포털
The evapotranspiration (ET) datasets were created under contract for this study by the University of Idaho. A high-resolution remote sensing technique known as Mapping Evapotranspiration at High Resolution and Internalized Calibration (METRIC) was used to create estimates of the spatial distribution of ET. The METRIC technique uses thermal infrared Landsat imagery to quantify actual evapotranspiration at a 30-meter resolution that can be related to individual irrigated fields. Because evaporation uses heat energy, ground surfaces with large ET rates are left cooler as a result of ET than ground surfaces that have less ET. As a consequence, irrigated fields appear in the Landsat images as cooler than nonirrigated fields. Products produced from this study include total seasonal and total monthly (April-October) actual evapotranspiration maps for 2013.
Evapotranspiration in the Upper Klamath Basin for June 2013
공공데이터포털
The evapotranspiration (ET) datasets were created under contract for this study by the University of Idaho. A high-resolution remote sensing technique known as Mapping Evapotranspiration at High Resolution and Internalized Calibration (METRIC) was used to create estimates of the spatial distribution of ET. The METRIC technique uses thermal infrared Landsat imagery to quantify actual evapotranspiration at a 30-meter resolution that can be related to individual irrigated fields. Because evaporation uses heat energy, ground surfaces with large ET rates are left cooler as a result of ET than ground surfaces that have less ET. As a consequence, irrigated fields appear in the Landsat images as cooler than nonirrigated fields. Products produced from this study include total seasonal and total monthly (April-October) actual evapotranspiration maps for 2013.
Evapotranspiration in the Upper Klamath Basin for the 2013 Growing Season (April - October)
공공데이터포털
The evapotranspiration (ET) datasets were created under contract for this study by the University of Idaho. A high-resolution remote sensing technique known as Mapping Evapotranspiration at High Resolution and Internalized Calibration (METRIC) was used to create estimates of the spatial distribution of ET. The METRIC technique uses thermal infrared Landsat imagery to quantify actual evapotranspiration at a 30-meter resolution that can be related to individual irrigated fields. Because evaporation uses heat energy, ground surfaces with large ET rates are left cooler as a result of ET than ground surfaces that have less ET. As a consequence, irrigated fields appear in the Landsat images as cooler than nonirrigated fields. Products produced from this study include total seasonal and total monthly (April-October) actual evapotranspiration maps for 2013.
Klamath Basin Restoration Agreement Off-Project Water Program Evapotranspiration Map for June 2004
공공데이터포털
Hydrological Information Products for the Off-Project Water Program of the Klamath Basin Restoration Agreement U.S. Geological Survey Open-File Report 2012-1199 U.S. Department of the Interior By Daniel T. Snyder, John C. Risley, and Jonathan V. Haynes Prepared in cooperation with The Klamath Tribes Access complete report at: https://pubs.usgs.gov/of/2012/1199 Suggested citation: Snyder, D.T., Risley, J.C., and Haynes, J.V., 2012, Hydrological information products for the Off-Project Water Program of the Klamath Basin Restoration Agreement: U.S. Geological Survey Open-File Report 2012–1199, 17 p., https://pubs.usgs.gov/of/2012/1199 Summary The Klamath Basin Restoration Agreement (KBRA) was developed by a diverse group of stakeholders, Federal and State resource management agencies, Tribal representatives, and interest groups to provide a comprehensive solution to ecological and water-supply issues in the Klamath Basin. The Off-Project Water Program (OPWP), one component of the KBRA, has as one of its purposes to permanently provide an additional 30,000 acre-feet of water per year on an average annual basis to Upper Klamath Lake through “voluntary retirement of water rights or water uses or other means as agreed to by the Klamath Tribes, to improve fisheries habitat and also provide for stability of irrigation water deliveries.” The geographic area where the water rights could be retired encompasses approximately 1,900 square miles. The OPWP area is defined as including the Sprague River drainage, the Sycan River drainage downstream of Sycan Marsh, the Wood River drainage, and the Williamson River drainage from Kirk Reef at the southern end of Klamath Marsh downstream to the confluence with the Sprague River. Extensive, broad, flat, poorly drained uplands, valleys, and wetlands characterize much of the study area. Irrigation is almost entirely used for pasture. To assist parties involved with decisionmaking and implementation of the OPWP, the U.S. Geological Survey (USGS), in cooperation with the Klamath Tribes and other stakeholders, created five hydrological i nformation products. These products include GIS digital maps and datasets containing spatial information on evapotranspiration, subirrigation indicators, water rights, subbasin streamflow statistics, and return-flow indicators. The evapotranspiration (ET) datasets were created under contract for this study by Evapotranspiration, Plus, LLC, of Twin Falls, Idaho. A high-resolution remote sensing technique known as Mapping Evapotranspiration at High Resolution and Internalized Calibration (METRIC) was used to create estimates of the spatial distribution of ET. The METRIC technique uses thermal infrared Landsat imagery to quantify actual evapotranspiration at a 30-meter resolution that can be related to individual irrigated fields. Because evaporation uses heat energy, ground surfaces with large ET rates are left cooler as a result of ET than ground surfaces that have less ET. As a consequence, irrigated fields appear in the Landsat images as cooler than nonirrigated fields. Products produced from this study include total seasonal and total monthly (April–October) actual evapotranspiration maps for 2004 (a dry year) and 2006 (a wet year). Maps showing indicators of natural subirrigation were also provided by this study. “Subirrigation” as used here is the evapotranspiration of shallow groundwater by plants with roots that penetrate to or near the water table. Subirrigation often occurs at locations where the water table is at or above the plant rooting depth. Natural consumptive use by plants diminishes the benefit of retiring water rights in subirrigated areas. Some agricultural production may be possible, however, on subirrigated lands for which water rights are retired. Because of the difficulty in precisely mapping and quantifying subirrigation, this study presents several sources of spatially mapped data that can be used as indicators of higher subirrigation
Klamath Basin Restoration Agreement Off-Project Water Program Evapotranspiration Map for September 2004
공공데이터포털
Hydrological Information Products for the Off-Project Water Program of the Klamath Basin Restoration Agreement U.S. Geological Survey Open-File Report 2012-1199 U.S. Department of the Interior By Daniel T. Snyder, John C. Risley, and Jonathan V. Haynes Prepared in cooperation with The Klamath Tribes Access complete report at: https://pubs.usgs.gov/of/2012/1199 Suggested citation: Snyder, D.T., Risley, J.C., and Haynes, J.V., 2012, Hydrological information products for the Off-Project Water Program of the Klamath Basin Restoration Agreement: U.S. Geological Survey Open-File Report 2012–1199, 17 p., https://pubs.usgs.gov/of/2012/1199 Summary The Klamath Basin Restoration Agreement (KBRA) was developed by a diverse group of stakeholders, Federal and State resource management agencies, Tribal representatives, and interest groups to provide a comprehensive solution to ecological and water-supply issues in the Klamath Basin. The Off-Project Water Program (OPWP), one component of the KBRA, has as one of its purposes to permanently provide an additional 30,000 acre-feet of water per year on an average annual basis to Upper Klamath Lake through “voluntary retirement of water rights or water uses or other means as agreed to by the Klamath Tribes, to improve fisheries habitat and also provide for stability of irrigation water deliveries.” The geographic area where the water rights could be retired encompasses approximately 1,900 square miles. The OPWP area is defined as including the Sprague River drainage, the Sycan River drainage downstream of Sycan Marsh, the Wood River drainage, and the Williamson River drainage from Kirk Reef at the southern end of Klamath Marsh downstream to the confluence with the Sprague River. Extensive, broad, flat, poorly drained uplands, valleys, and wetlands characterize much of the study area. Irrigation is almost entirely used for pasture. To assist parties involved with decisionmaking and implementation of the OPWP, the U.S. Geological Survey (USGS), in cooperation with the Klamath Tribes and other stakeholders, created five hydrological i nformation products. These products include GIS digital maps and datasets containing spatial information on evapotranspiration, subirrigation indicators, water rights, subbasin streamflow statistics, and return-flow indicators. The evapotranspiration (ET) datasets were created under contract for this study by Evapotranspiration, Plus, LLC, of Twin Falls, Idaho. A high-resolution remote sensing technique known as Mapping Evapotranspiration at High Resolution and Internalized Calibration (METRIC) was used to create estimates of the spatial distribution of ET. The METRIC technique uses thermal infrared Landsat imagery to quantify actual evapotranspiration at a 30-meter resolution that can be related to individual irrigated fields. Because evaporation uses heat energy, ground surfaces with large ET rates are left cooler as a result of ET than ground surfaces that have less ET. As a consequence, irrigated fields appear in the Landsat images as cooler than nonirrigated fields. Products produced from this study include total seasonal and total monthly (April–October) actual evapotranspiration maps for 2004 (a dry year) and 2006 (a wet year). Maps showing indicators of natural subirrigation were also provided by this study. “Subirrigation” as used here is the evapotranspiration of shallow groundwater by plants with roots that penetrate to or near the water table. Subirrigation often occurs at locations where the water table is at or above the plant rooting depth. Natural consumptive use by plants diminishes the benefit of retiring water rights in subirrigated areas. Some agricultural production may be possible, however, on subirrigated lands for which water rights are retired. Because of the difficulty in precisely mapping and quantifying subirrigation, this study presents several sources of spatially mapped data that can be used as indicators of higher subirrigation