데이터셋 상세
미국
EXOSAT/CMA Sources (Screened for Quality)
This database table contains the results of the sources detected from the two EXOSAT LE telescopes. Each telescope had a channel multiplier array, CMA, detector in the focal plane. The CMA/telescope combination covered the 0.05-2.0 keV energy range with a field of view of 2 degrees and an on-axis angular resolution of 20 arcseconds (HEW). The detectors had no intrinsic spectral capabilities; however, different filters were used to make broad band measurements. The most commonly used were thin Lexan (no. 7), Aluminum-Parylene (no. 6) and Boron (no. 8). An image was generated for each observation using a particular filter. A detection program was used to generate one database entry per source detected above a particular threshold. This catalog contains the list of detected sources, details about those detections, plus the names of the files containing the associated image and lightcurves. Since many objects were observed many times, there are multiple entries per object. The list of detections in this database table has been screened for quality. Only sources with qflag_le >= 3 are present. Please refer to the <a href="/W3Browse/exosat/cma.html">CMA</a> database table for the complete, unscreened list of detections. This database table was created by the HEASARC in August 2020, and it is based on a table created by the HEASARC in 1995 or earlier. The original CMA database table was created at the EXOSAT observatory during the post-operation phase (1986-1990) as part of the pipeline processing. These CMA results are part of the HEASARC data holdings from the start of the HEASARC. This is a service provided by NASA HEASARC .
데이터 정보
연관 데이터
EXOSAT/CMA Sources (Unscreened)
공공데이터포털
This database table contains the results of the sources detected from the two EXOSAT LE telescopes. Each telescope had a channel multiplier array, CMA, detector in the focal plane. The CMA/telescope combination covered the 0.05-2.0 keV energy range with a field of view of 2 degrees and an on-axis angular resolution of 20 arcseconds (HEW). The detectors had no intrinsic spectral capabilities; however, different filters were used to make broad band measurements. The most commonly used were thin Lexan (no. 7), Aluminum-Parylene (no. 6) and Boron (no. 8). An image was generated for each observation using a particular filter. A detection program was used to generate one database entry per source detected above a particular threshold. This catalog contains the list of detected sources, details about those detections, plus the names of the files containing the associated image and lightcurves. Since many objects were observed many times, there are multiple entries per object. This database table contains the complete list of detections and has not been screened for quality. Please refer to the CMASCREEN database table for a version which has been screened for quality. This database table was created by the HEASARC in August 2020, and it is based on a table created by the HEASARC in 1995 or earlier. The original CMA database table was created at the EXOSAT observatory during the post-operation phase (1986-1990) as part of the pipeline processing. These CMA results are part of the HEASARC data holdings from the start of the HEASARC. This is a service provided by NASA HEASARC .
EXOSAT CMA Images for Each Pointing
공공데이터포털
This database table contains the images from two EXOSAT LE telescopes with the channel multiplier array (CMA) detectors in the focal plane. The CMA/telescope combination covers the 0.05-2.5 keV energy range with a field of view of 2 degrees and an on-axis angular resolution of 24 arc seconds (HEW). The detectors had no intrinsic spectral capabilities; however, different filters were used to make broad band measurements. The most commonly used were Thin Lexan (number 7), Aluminum-Parylene (number 6) and Boron (number 8). An image was generated for each filter used during an observation. This Browse table was created in March 1995 and updated in October 2003. This is a service provided by NASA HEASARC .
EXOSAT GSPC Spectra and Lightcurves
공공데이터포털
The results and data products from the EXOSAT GSPC. Only sources with ME count rates of at least 5 ct/s/half are included. This is a service provided by NASA HEASARC .
Allen Telescope Array Twenty-cm Survey (ATATS) Source Catalog
공공데이터포털
This table contains the source catalog from the Allen Telescope Array Twenty-centimeter Survey (ATATS), a multi-epoch (12 visits), 690 deg2 radio image and catalog at 1.4 GHz. The survey is designed to detect rare, very bright transients as well as to verify the capabilities of the ATA to form large mosaics. The combined image using data from all 12 ATATS epochs has an rms noise sigma = 3.94 mJy beam-1 and a dynamic range of 180, with a circular beam of 150 arcseconds FWHM. It contains 4408 sources to a limiting sensitivity of 5 sigma = 20 mJy beam-1. The authors compare the catalog generated from this 12-epoch combined image to the NRAO VLA Sky Survey (NVSS), a legacy survey at the same frequency, and find that they can measure source positions to better than ~ 20 arcseconds. For sources above the ATATS completeness limit, the median flux density is 97% of the median value for matched NVSS sources, indicative of an accurate overall flux calibration. The authors examine the effects of source confusion due to the effects of differing resolution between the ATATS and NVSS on their ability to compare flux densities. They detect no transients at flux densities greater than 40 mJy in comparison with NVSS and place a 2 sigma upper limit of 0.004 deg-2 on the transient rate for such sources. These results suggest that the >~ 1 Jy transients reported by Matsumara et al. (2009, AJ, 138, 787) may not be true transients, but rather variable sources at their flux density threshold. This table was created by the HEASARC in September 2010 based on the electronic version of Table 2 from the reference paper which was obtained from the ApJ web site. This is a service provided by NASA HEASARC .
BARREL 2M X-ray Spectrometer (MSPC) Bremsstrahlung X-ray Spectrum Medium Time Resolution, Level 2, 4 s Data
공공데이터포털
MSPC: 48 channels of medium time resolution, 4 s, Bremsstrahlung X-ray spectra detected with a NaI Scintillator. The nominal energy range covered by the 48 channels ranges from 0 MeV to 4 MeV. All channels are combined to a single variable named MSPC.The BARREL Mission was a multiple-balloon investigation designed to study electron losses from Earth's Radiation Belts. Selected as a NASA Living with a Star Mission of Opportunity, BARREL was designed to augment the Radiation Belt Storm Probes, RBSP, mission by providing measurements of the spatial and temporal variations of electron precipitation from the radiation belts. The RBSP mission has since been renamed the Van Allen Probes mission. Each BARREL balloon carried an X-ray spectrometer to measure the bremsstrahlung X-rays produced by precipitating relativistic electrons as they collide with neutrals in the atmosphere, and a DC magnetometer to measure ULF-timescale variations of the magnetic field. BARREL observations collected near latitudes close to either the antarctic and arctic circles at stratospheric altitudes at about 30 km. The BARREL instrumentation provided the first balloon measurements of relativistic electron precipitation while comprehensive in situ measurements of both plasma waves and energetic particles were available. Also, the BARREL data has been used to characterize the spatial scale of precipitation at relativistic energies.The initial pair of balloon campaigns that were conducted initially during the Austral summer months of January and February of 2013 and 2014 with launches from two stations located in Antarctica: the British base located at Halley Bay on the Brunt Ice Shelf and the South African SANAE IV base (SANAE stand for South African National Antarctic Expedition) located in Vesleskarvet, Queen Maud Land. For the 2013 and 2014 the balloon campaigns, the launch plan was designed to maintain an array with about five payloads spread across about six hours of magnetic local time, MLT, in the region that magnetically maps to the radiation belts. Thus, the BARREL balloon constellation constituted an evolving and slowly moving array able to study relativistic electron precipitation from the radiation belts.Later campaigns were undertaken in 2015 and 2016 from the Esrange Space Center located in Kiruna, Sweden. The 2015 and 2016 campaigns were undertaken in coordination with the Van Allen Probes mission, the European Incoherent Scatter Scientific Association, EISCAT, incoherent scatter radar system, and other ground and space based instruments. Seven balloon launches occurred during the August 2015 BARREL campaign. A total of eight flights occurred during August 2016.Summing over the four BARREL campaigns, over 50 small, approximately 20 kg, stratospheric balloons were successively launched. The website creeated and hosted by A.J. Halford (see Information URL below) reports that: "By the end of the campaigns, there were over 90 researchers coordinating on a daily basis with the BARREL team working on 7 different satellite missions, 1 other balloon mission, and way too many ground based instruments to count." Although the BARREL mission launched only balloons during the years from 2013 to 2016, research using data collected on these flights is ongoing, so stay tuned for updates! All data and analysis software are freely available to the scientific community.The information listed above in this resource description was compiled by referencing several BARREL related resources including primarily the Millan et al. (2013) Space Science Reviews publication, the BARREL at Dartmouth mission web site, and the website maintained by A.J. Halford.The current release of all BARREL CDF data products are Version 10 files.BARREL will make all its scientific data products quickly and publicly available but all users are expected to read and follow the BARREL Data Usage Policy listed below.BARREL Data Usage PolicyBARREL data products are made freely available to the
BARREL 2L X-ray Spectrometer (MSPC) Bremsstrahlung X-ray Spectrum Medium Time Resolution, Level 2, 4 s Data
공공데이터포털
MSPC: 48 channels of medium time resolution, 4 s, Bremsstrahlung X-ray spectra detected with a NaI Scintillator. The nominal energy range covered by the 48 channels ranges from 0 MeV to 4 MeV. All channels are combined to a single variable named MSPC.The BARREL Mission was a multiple-balloon investigation designed to study electron losses from Earth's Radiation Belts. Selected as a NASA Living with a Star Mission of Opportunity, BARREL was designed to augment the Radiation Belt Storm Probes, RBSP, mission by providing measurements of the spatial and temporal variations of electron precipitation from the radiation belts. The RBSP mission has since been renamed the Van Allen Probes mission. Each BARREL balloon carried an X-ray spectrometer to measure the bremsstrahlung X-rays produced by precipitating relativistic electrons as they collide with neutrals in the atmosphere, and a DC magnetometer to measure ULF-timescale variations of the magnetic field. BARREL observations collected near latitudes close to either the antarctic and arctic circles at stratospheric altitudes at about 30 km. The BARREL instrumentation provided the first balloon measurements of relativistic electron precipitation while comprehensive in situ measurements of both plasma waves and energetic particles were available. Also, the BARREL data has been used to characterize the spatial scale of precipitation at relativistic energies.The initial pair of balloon campaigns that were conducted initially during the Austral summer months of January and February of 2013 and 2014 with launches from two stations located in Antarctica: the British base located at Halley Bay on the Brunt Ice Shelf and the South African SANAE IV base (SANAE stand for South African National Antarctic Expedition) located in Vesleskarvet, Queen Maud Land. For the 2013 and 2014 the balloon campaigns, the launch plan was designed to maintain an array with about five payloads spread across about six hours of magnetic local time, MLT, in the region that magnetically maps to the radiation belts. Thus, the BARREL balloon constellation constituted an evolving and slowly moving array able to study relativistic electron precipitation from the radiation belts.Later campaigns were undertaken in 2015 and 2016 from the Esrange Space Center located in Kiruna, Sweden. The 2015 and 2016 campaigns were undertaken in coordination with the Van Allen Probes mission, the European Incoherent Scatter Scientific Association, EISCAT, incoherent scatter radar system, and other ground and space based instruments. Seven balloon launches occurred during the August 2015 BARREL campaign. A total of eight flights occurred during August 2016.Summing over the four BARREL campaigns, over 50 small, approximately 20 kg, stratospheric balloons were successively launched. The website creeated and hosted by A.J. Halford (see Information URL below) reports that: "By the end of the campaigns, there were over 90 researchers coordinating on a daily basis with the BARREL team working on 7 different satellite missions, 1 other balloon mission, and way too many ground based instruments to count." Although the BARREL mission launched only balloons during the years from 2013 to 2016, research using data collected on these flights is ongoing, so stay tuned for updates! All data and analysis software are freely available to the scientific community.The information listed above in this resource description was compiled by referencing several BARREL related resources including primarily the Millan et al. (2013) Space Science Reviews publication, the BARREL at Dartmouth mission web site, and the website maintained by A.J. Halford.The current release of all BARREL CDF data products are Version 10 files.BARREL will make all its scientific data products quickly and publicly available but all users are expected to read and follow the BARREL Data Usage Policy listed below.BARREL Data Usage PolicyBARREL data products are made freely available to the
BARREL 1M X-ray Spectrometer (MSPC) Bremsstrahlung X-ray Spectrum Medium Time Resolution, Level 2, 4 s Data
공공데이터포털
MSPC: 48 channels of medium time resolution, 4 s, Bremsstrahlung X-ray spectra detected with a NaI Scintillator. The nominal energy range covered by the 48 channels ranges from 0 MeV to 4 MeV. All channels are combined to a single variable named MSPC.The BARREL Mission was a multiple-balloon investigation designed to study electron losses from Earth's Radiation Belts. Selected as a NASA Living with a Star Mission of Opportunity, BARREL was designed to augment the Radiation Belt Storm Probes, RBSP, mission by providing measurements of the spatial and temporal variations of electron precipitation from the radiation belts. The RBSP mission has since been renamed the Van Allen Probes mission. Each BARREL balloon carried an X-ray spectrometer to measure the bremsstrahlung X-rays produced by precipitating relativistic electrons as they collide with neutrals in the atmosphere, and a DC magnetometer to measure ULF-timescale variations of the magnetic field. BARREL observations collected near latitudes close to either the antarctic and arctic circles at stratospheric altitudes at about 30 km. The BARREL instrumentation provided the first balloon measurements of relativistic electron precipitation while comprehensive in situ measurements of both plasma waves and energetic particles were available. Also, the BARREL data has been used to characterize the spatial scale of precipitation at relativistic energies.The initial pair of balloon campaigns that were conducted initially during the Austral summer months of January and February of 2013 and 2014 with launches from two stations located in Antarctica: the British base located at Halley Bay on the Brunt Ice Shelf and the South African SANAE IV base (SANAE stand for South African National Antarctic Expedition) located in Vesleskarvet, Queen Maud Land. For the 2013 and 2014 the balloon campaigns, the launch plan was designed to maintain an array with about five payloads spread across about six hours of magnetic local time, MLT, in the region that magnetically maps to the radiation belts. Thus, the BARREL balloon constellation constituted an evolving and slowly moving array able to study relativistic electron precipitation from the radiation belts.Later campaigns were undertaken in 2015 and 2016 from the Esrange Space Center located in Kiruna, Sweden. The 2015 and 2016 campaigns were undertaken in coordination with the Van Allen Probes mission, the European Incoherent Scatter Scientific Association, EISCAT, incoherent scatter radar system, and other ground and space based instruments. Seven balloon launches occurred during the August 2015 BARREL campaign. A total of eight flights occurred during August 2016.Summing over the four BARREL campaigns, over 50 small, approximately 20 kg, stratospheric balloons were successively launched. The website creeated and hosted by A.J. Halford (see Information URL below) reports that: "By the end of the campaigns, there were over 90 researchers coordinating on a daily basis with the BARREL team working on 7 different satellite missions, 1 other balloon mission, and way too many ground based instruments to count." Although the BARREL mission launched only balloons during the years from 2013 to 2016, research using data collected on these flights is ongoing, so stay tuned for updates! All data and analysis software are freely available to the scientific community.The information listed above in this resource description was compiled by referencing several BARREL related resources including primarily the Millan et al. (2013) Space Science Reviews publication, the BARREL at Dartmouth mission web site, and the website maintained by A.J. Halford.The current release of all BARREL CDF data products are Version 10 files.BARREL will make all its scientific data products quickly and publicly available but all users are expected to read and follow the BARREL Data Usage Policy listed below.BARREL Data Usage PolicyBARREL data products are made freely available to the
BARREL 2O X-ray Spectrometer (MSPC) Bremsstrahlung X-ray Spectrum Medium Time Resolution, Level 2, 4 s Data
공공데이터포털
MSPC: 48 channels of medium time resolution, 4 s, Bremsstrahlung X-ray spectra detected with a NaI Scintillator. The nominal energy range covered by the 48 channels ranges from 0 MeV to 4 MeV. All channels are combined to a single variable named MSPC.The BARREL Mission was a multiple-balloon investigation designed to study electron losses from Earth's Radiation Belts. Selected as a NASA Living with a Star Mission of Opportunity, BARREL was designed to augment the Radiation Belt Storm Probes, RBSP, mission by providing measurements of the spatial and temporal variations of electron precipitation from the radiation belts. The RBSP mission has since been renamed the Van Allen Probes mission. Each BARREL balloon carried an X-ray spectrometer to measure the bremsstrahlung X-rays produced by precipitating relativistic electrons as they collide with neutrals in the atmosphere, and a DC magnetometer to measure ULF-timescale variations of the magnetic field. BARREL observations collected near latitudes close to either the antarctic and arctic circles at stratospheric altitudes at about 30 km. The BARREL instrumentation provided the first balloon measurements of relativistic electron precipitation while comprehensive in situ measurements of both plasma waves and energetic particles were available. Also, the BARREL data has been used to characterize the spatial scale of precipitation at relativistic energies.The initial pair of balloon campaigns that were conducted initially during the Austral summer months of January and February of 2013 and 2014 with launches from two stations located in Antarctica: the British base located at Halley Bay on the Brunt Ice Shelf and the South African SANAE IV base (SANAE stand for South African National Antarctic Expedition) located in Vesleskarvet, Queen Maud Land. For the 2013 and 2014 the balloon campaigns, the launch plan was designed to maintain an array with about five payloads spread across about six hours of magnetic local time, MLT, in the region that magnetically maps to the radiation belts. Thus, the BARREL balloon constellation constituted an evolving and slowly moving array able to study relativistic electron precipitation from the radiation belts.Later campaigns were undertaken in 2015 and 2016 from the Esrange Space Center located in Kiruna, Sweden. The 2015 and 2016 campaigns were undertaken in coordination with the Van Allen Probes mission, the European Incoherent Scatter Scientific Association, EISCAT, incoherent scatter radar system, and other ground and space based instruments. Seven balloon launches occurred during the August 2015 BARREL campaign. A total of eight flights occurred during August 2016.Summing over the four BARREL campaigns, over 50 small, approximately 20 kg, stratospheric balloons were successively launched. The website creeated and hosted by A.J. Halford (see Information URL below) reports that: "By the end of the campaigns, there were over 90 researchers coordinating on a daily basis with the BARREL team working on 7 different satellite missions, 1 other balloon mission, and way too many ground based instruments to count." Although the BARREL mission launched only balloons during the years from 2013 to 2016, research using data collected on these flights is ongoing, so stay tuned for updates! All data and analysis software are freely available to the scientific community.The information listed above in this resource description was compiled by referencing several BARREL related resources including primarily the Millan et al. (2013) Space Science Reviews publication, the BARREL at Dartmouth mission web site, and the website maintained by A.J. Halford.The current release of all BARREL CDF data products are Version 10 files.BARREL will make all its scientific data products quickly and publicly available but all users are expected to read and follow the BARREL Data Usage Policy listed below.BARREL Data Usage PolicyBARREL data products are made freely available to the
BARREL 1G X-ray Spectrometer (MSPC) Bremsstrahlung X-ray Spectrum Medium Time Resolution, Level 2, 4 s Data
공공데이터포털
MSPC: 48 channels of medium time resolution, 4 s, Bremsstrahlung X-ray spectra detected with a NaI Scintillator. The nominal energy range covered by the 48 channels ranges from 0 MeV to 4 MeV. All channels are combined to a single variable named MSPC.The BARREL Mission was a multiple-balloon investigation designed to study electron losses from Earth's Radiation Belts. Selected as a NASA Living with a Star Mission of Opportunity, BARREL was designed to augment the Radiation Belt Storm Probes, RBSP, mission by providing measurements of the spatial and temporal variations of electron precipitation from the radiation belts. The RBSP mission has since been renamed the Van Allen Probes mission. Each BARREL balloon carried an X-ray spectrometer to measure the bremsstrahlung X-rays produced by precipitating relativistic electrons as they collide with neutrals in the atmosphere, and a DC magnetometer to measure ULF-timescale variations of the magnetic field. BARREL observations collected near latitudes close to either the antarctic and arctic circles at stratospheric altitudes at about 30 km. The BARREL instrumentation provided the first balloon measurements of relativistic electron precipitation while comprehensive in situ measurements of both plasma waves and energetic particles were available. Also, the BARREL data has been used to characterize the spatial scale of precipitation at relativistic energies.The initial pair of balloon campaigns that were conducted initially during the Austral summer months of January and February of 2013 and 2014 with launches from two stations located in Antarctica: the British base located at Halley Bay on the Brunt Ice Shelf and the South African SANAE IV base (SANAE stand for South African National Antarctic Expedition) located in Vesleskarvet, Queen Maud Land. For the 2013 and 2014 the balloon campaigns, the launch plan was designed to maintain an array with about five payloads spread across about six hours of magnetic local time, MLT, in the region that magnetically maps to the radiation belts. Thus, the BARREL balloon constellation constituted an evolving and slowly moving array able to study relativistic electron precipitation from the radiation belts.Later campaigns were undertaken in 2015 and 2016 from the Esrange Space Center located in Kiruna, Sweden. The 2015 and 2016 campaigns were undertaken in coordination with the Van Allen Probes mission, the European Incoherent Scatter Scientific Association, EISCAT, incoherent scatter radar system, and other ground and space based instruments. Seven balloon launches occurred during the August 2015 BARREL campaign. A total of eight flights occurred during August 2016.Summing over the four BARREL campaigns, over 50 small, approximately 20 kg, stratospheric balloons were successively launched. The website creeated and hosted by A.J. Halford (see Information URL below) reports that: "By the end of the campaigns, there were over 90 researchers coordinating on a daily basis with the BARREL team working on 7 different satellite missions, 1 other balloon mission, and way too many ground based instruments to count." Although the BARREL mission launched only balloons during the years from 2013 to 2016, research using data collected on these flights is ongoing, so stay tuned for updates! All data and analysis software are freely available to the scientific community.The information listed above in this resource description was compiled by referencing several BARREL related resources including primarily the Millan et al. (2013) Space Science Reviews publication, the BARREL at Dartmouth mission web site, and the website maintained by A.J. Halford.The current release of all BARREL CDF data products are Version 10 files.BARREL will make all its scientific data products quickly and publicly available but all users are expected to read and follow the BARREL Data Usage Policy listed below.BARREL Data Usage PolicyBARREL data products are made freely available to the
BARREL 2X X-ray Spectrometer (MSPC) Bremsstrahlung X-ray Spectrum Medium Time Resolution, Level 2, 4 s Data
공공데이터포털
MSPC: 48 channels of medium time resolution, 4 s, Bremsstrahlung X-ray spectra detected with a NaI Scintillator. The nominal energy range covered by the 48 channels ranges from 0 MeV to 4 MeV. All channels are combined to a single variable named MSPC.The BARREL Mission was a multiple-balloon investigation designed to study electron losses from Earth's Radiation Belts. Selected as a NASA Living with a Star Mission of Opportunity, BARREL was designed to augment the Radiation Belt Storm Probes, RBSP, mission by providing measurements of the spatial and temporal variations of electron precipitation from the radiation belts. The RBSP mission has since been renamed the Van Allen Probes mission. Each BARREL balloon carried an X-ray spectrometer to measure the bremsstrahlung X-rays produced by precipitating relativistic electrons as they collide with neutrals in the atmosphere, and a DC magnetometer to measure ULF-timescale variations of the magnetic field. BARREL observations collected near latitudes close to either the antarctic and arctic circles at stratospheric altitudes at about 30 km. The BARREL instrumentation provided the first balloon measurements of relativistic electron precipitation while comprehensive in situ measurements of both plasma waves and energetic particles were available. Also, the BARREL data has been used to characterize the spatial scale of precipitation at relativistic energies.The initial pair of balloon campaigns that were conducted initially during the Austral summer months of January and February of 2013 and 2014 with launches from two stations located in Antarctica: the British base located at Halley Bay on the Brunt Ice Shelf and the South African SANAE IV base (SANAE stand for South African National Antarctic Expedition) located in Vesleskarvet, Queen Maud Land. For the 2013 and 2014 the balloon campaigns, the launch plan was designed to maintain an array with about five payloads spread across about six hours of magnetic local time, MLT, in the region that magnetically maps to the radiation belts. Thus, the BARREL balloon constellation constituted an evolving and slowly moving array able to study relativistic electron precipitation from the radiation belts.Later campaigns were undertaken in 2015 and 2016 from the Esrange Space Center located in Kiruna, Sweden. The 2015 and 2016 campaigns were undertaken in coordination with the Van Allen Probes mission, the European Incoherent Scatter Scientific Association, EISCAT, incoherent scatter radar system, and other ground and space based instruments. Seven balloon launches occurred during the August 2015 BARREL campaign. A total of eight flights occurred during August 2016.Summing over the four BARREL campaigns, over 50 small, approximately 20 kg, stratospheric balloons were successively launched. The website creeated and hosted by A.J. Halford (see Information URL below) reports that: "By the end of the campaigns, there were over 90 researchers coordinating on a daily basis with the BARREL team working on 7 different satellite missions, 1 other balloon mission, and way too many ground based instruments to count." Although the BARREL mission launched only balloons during the years from 2013 to 2016, research using data collected on these flights is ongoing, so stay tuned for updates! All data and analysis software are freely available to the scientific community.The information listed above in this resource description was compiled by referencing several BARREL related resources including primarily the Millan et al. (2013) Space Science Reviews publication, the BARREL at Dartmouth mission web site, and the website maintained by A.J. Halford.The current release of all BARREL CDF data products are Version 10 files.BARREL will make all its scientific data products quickly and publicly available but all users are expected to read and follow the BARREL Data Usage Policy listed below.BARREL Data Usage PolicyBARREL data products are made freely available to the