데이터셋 상세
미국
Fully Coupled Geomechanics and Discrete Flow Network Modeling of Hydraulic Fracturing for Geothermal Applications
The primary objective of our current research is to develop a computational test bed for evaluating borehole techniques to enhance fluid flow and heat transfer in enhanced geothermal systems (EGS). Simulating processes resulting in hydraulic fracturing and/or the remobilization of existing fractures, especially the interaction between propagating fractures and existing fractures, represents a critical goal of our project. This paper details the basic methodology of our approach. Two numerical examples showing the capability and effectiveness of our simulator are also presented.
데이터 정보
연관 데이터
Modeling Responses of Naturally Fractured Geothermal Reservoir to Low-Pressure Stimulation
공공데이터포털
Hydraulic shearing is an appealing reservoir stimulation strategy for Enhanced Geothermal Systems. It is believed that hydro-shearing is likely to simulate a fracture network that covers a relatively large volume of the reservoir whereas hydro-fracturing tends to create a small number of fractures. In this paper, we examine the geomechanical and hydraulic behaviors of natural fracture systems subjected to hydro-shearing stimulation and develop a coupled numerical model within the framework of discrete fracture network modeling. We found that in the low pressure hydro-shearing regime, the coupling between the fluid phase and the rock solid phase is relatively simple, and the numerical model is computationally efficient. Using this modified model, we study the behavior of a random fracture network subjected to hydro-shearing stimulation.
Simulating Complex Fracture Systems in Geothermal Reservoirs Using an Explicitly Coupled Hydro-Geomechanical Model
공공데이터포털
Low permeability geothermal reservoirs can be stimulated by hydraulic fracturing to create Enhanced (or Engineered) Geothermal Systems (EGS) with higher permeability and improved heat transfer to increase heat production. In this paper, we document our effort to develop a numerical simulator with explicit geomechanics-discrete flow network coupling by utilizing and further advancing the simulation capabilities of the Livermore Distinct Element Code (LDEC). The important modules of the simulator include an explicit finite element solid solver, a finite volume method flow solver, a joint model using the combined FEM-DEM capability of LDEC, and an adaptive remeshing module. The numerical implementation is verified against the classical KGD model. The interaction between two fractures with simple geometry and the stimulation of a relatively complex existing fracture network under different in-situ stress conditions are studied with the simulator.
Investigation of Stimulation-Response Relationships for Complex Fracture Systems in Enhanced Geothermal Reservoirs
공공데이터포털
Hydraulic fracturing is currently the primary method for stimulating low-permeability geothermal reservoirs and creating Enhanced (or Engineered) Geothermal Systems (EGS) with improved permeability and heat production efficiency. Complex natural fracture systems usually exist in the formations to be stimulated and it is therefore critical to understand the interactions between existing fractures and newly created fractures before optimal stimulation strategies can be developed. Our study aims to improve the understanding of EGS stimulation-response relationships by developing and applying computer-based models that can effectively reflect the key mechanisms governing interactions between complex existing fracture networks and newly created hydraulic fractures. In this paper, we first briefly describe the key modules of our methodology, namely a geomechanics solver, a discrete fracture flow solver, a rock joint response model, an adaptive remeshing module, and most importantly their effective coupling. After verifying the numerical model against classical closed-form solutions, we investigate responses of reservoirs with different preexisting natural fractures to a variety of stimulation strategies. The factors investigated include: the in situ stress states (orientation of the principal stresses and the degree of stress anisotropy), pumping pressure, and stimulation sequences of multiple wells.
Geomechanical Modeling for Thermal Spallation Drilling
공공데이터포털
Wells for Engineered Geothermal Systems (EGS) typically occur in conditions presenting significant challenges for conventional rotary and percussive drilling technologies: granitic rocks that reduce drilling speeds and cause substantial equipment wear. Thermal spallation drilling, in which rock is fragmented by high temperature rather than mechanical means, offers a potential solution to these problems. However, much of the knowledge surrounding this drilling technique is empirical - based on laboratory experiments that may or may not represent field conditions. This paper outlines a new numerical modeling effort investigating the grain-scale processes governing thermal spallation drilling. Several factors affect spall production at the mesoscale, including grain size and size distribution, surface temperatures and material heterogeneity. To investigate the relative influence of these factors, we have conducted a series of simulations using GEODYN - a parallel Eulerian solid and fluid dynamics code. In this paper, we describe a two-dimensional model used to simulate the grain-scale processes and present preliminary results from this modeling effort.