데이터셋 상세
미국
Fire Island National Seashore Conductivity, Temperature, and Depth (CTD) Profiles
Conductivity, Temperature, and Depth (CTD) Profiles associated with submerged mapping cruises, FIIS
데이터 정보
연관 데이터
Fire Island Shoreface Bathymetric Data collected with Personal Watercraft and Backpack along Fire Island, New York (2014) as a GeoTIFF
공공데이터포털
Scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center in St. Petersburg, Florida, conducted a bathymetric survey of Fire Island, New York, from October 5 to 10, 2014. The U.S. Geological Survey is involved in a post-Hurricane Sandy effort to map and monitor the morphologic evolution of the wilderness breach, which formed in October 2012 during Hurricane Sandy, as part of the Hurricane Sandy Supplemental Project GS2-2B. During this study, bathymetry data were collected, using single-beam echo sounders and global positioning systems mounted to personal watercraft, along the Fire Island shoreface and within the wilderness breach, Fire Island Inlet, Narrow Bay, and Great South Bay east of Nicoll Bay. Additional bathymetry and elevation data were collected using backpack and wheel-mounted global positioning systems along the subaerial beach (foreshore and backshore), and flood shoals and shallow channels within the wilderness breach and adjacent shoreface.
Shoreface Coastal Bathymetry Data Collected in May 2015 From Fire Island, New York: 100-Meter Digital Elevation Model
공공데이터포털
Scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center in St. Petersburg, Florida, conducted a bathymetric survey of Fire Island, New York, from May 6 to 20, 2015. The U.S. Geological Survey is involved in a post-Hurricane Sandy effort to map and monitor the morphologic evolution of the wilderness breach as a part of the Hurricane Sandy Supplemental Project GS2-2B. During this study, bathymetry data were collected with single-beam echosounders and Global Positioning Systems, which were mounted to personal watercraft, along the Fire Island shoreface and within the wilderness breach. Additional bathymetry and elevation data were collected using backpack Global Positioning Systems on flood shoals and in shallow channels within the wilderness breach.
Terrestrial-Based Lidar Beach Topography of Fire Island, New York, May 2015 - DEM data
공공데이터포털
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and the USGS Lower Mississippi-Gulf Water Science Center (LMG WSC) in Montgomery, Alabama, collected terrestrial-based light detection and ranging (T-lidar) elevation data at Fire Island, New York. The data were collected on May 18, 2015 as part of the ongoing beach monitoring within Hurricane Sandy Supplemental Project GS2-2B, and will be used to document and assess the morphological storm response and post-storm beach recovery. The survey extended along 30 kilometers(km) of the Fire Island National Seashore, from the eastern boundary of Robert Moses State Park to the western boundary of Smith Point County Park. This USGS Data Release includes the resulting processed elevation point data (xyz) and an interpolated digital elevation model (DEM). For further information regarding data collection and/or processing methods, refer to previously published USGS Data Series 980 (https://doi.org/10.3133/ds980).
Ground Penetrating Radar and Global Positioning System Data Collected from Fire Island, New York, March-April 2021
공공데이터포털
Fire Island, New York (NY) is a 50-kilometer (km) long barrier island system fronting the southern coast of Long Island, NY with relatively complex geology. In 2016, the U.S. Geological Survey (USGS) conducted ground penetrating radar (GPR) surveys and sediment sampling at Fire Island to characterize and quantify spatial variability in the subaerial geology (Forde and others, 2018; Buster and others, 2018). These surveys, in combination with historical data, allowed for a preliminary reconstruction of the barrier’s long-term evolution. In 2021, scientists from the USGS New York Water Science Center (NYWSC), on behalf of the USGS St. Petersburg Coastal and Marine Science Center (SPCMSC), conducted additional GPR and sediment sampling surveys at Point O' Woods (POW) and Ho-Hum Beach (HHB) on Fire Island to fill in gaps in the timeline of Fire Island’s development and illuminate relationships between different geomorphic structures observed along the island. This information will be used to calibrate a model of barrier island development, quantifying historic sediment fluxes within the Fire Island system.