Contour--Offshore of Gaviota Map Area, California
공공데이터포털
This part of DS 781 presents data for bathymetric contours for several seafloor maps of the Offshore of Gaviota Map Area, California. The vector data file is included in "Contours_OffshoreGaviota.zip," which is accessible from https://doi.org/10.5066/F7TH8JWJ. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Hartwell, S.R., Golden, N.E., Kvitek, R.G., and Davenport, C.W. (S.Y. Johnson and S.A. Cochran, eds.), 2018, California State Waters Map Series—Offshore of Gaviota, California: U.S. Geological Survey Open-File Report 2018–1023, pamphlet 41 p., 9 sheets, scale 1:24,000, https://doi.org/10.3133/ofr20181023. Bathymetry contours of the Offshore of Gaviota map area in southern California was generated from acoustic-bathymetry data collected largely by the U.S. Geological Survey (USGS) and by Fugro Pelagos Inc. Acoustic mapping was completed between 2007 and 2008 using a combination of 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111 multibeam echosounders, as well as a 234-kHz SEA SWATHplus bathymetric sidescan-sonar system. In addition, bathymetric-lidar data was collected in the nearshore area by the U.S. Army Corps of Engineers (USACE) Joint Lidar Bathymetry Technical Center of Expertise in 2009 and 2010. These mapping missions combine to provide continuous bathymetric data from the shoreline to beyond the limit of California's State Waters. Bathymetric contours at 10-m intervals were generated from a modified 2-m-resolution bathymetric surface. The most continuous contour segments were preserved; smaller segments and isolated island polygons were excluded from the final output. Contours were smoothed using a polynomial approximation with exponential kernel algorithm and a tolerance value of 60 m. The contours were then clipped to the boundary of the map area.
Habitat--Offshore of Gaviota Map Area, California
공공데이터포털
This part of DS 781 presents data for the habitat map of the Offshore of Gaviota Map Area, California. The vector data file is included in "Habitat_OffshoreGaviota.zip," which is accessible from https://doi.org/10.5066/F7TH8JWJ. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Hartwell, S.R., Golden, N.E., Kvitek, R.G., and Davenport, C.W. (S.Y. Johnson and S.A. Cochran, eds.), 2018, California State Waters Map Series—Offshore of Gaviota, California: U.S. Geological Survey Open-File Report 2018–1023, pamphlet 41 p., 9 sheets, scale 1:24,000, https://doi.org/10.3133/ofr20181023. This map shows physical marine benthic habitats in the Offshore of Gaviota map area. Marine benthic habitats represent a particular type of water quality, substrate, geomorphology, seafloor process, or any other attribute that may provide a habitat for a specific species or an assemblage of organisms. Marine benthic habitats are classified using the Coastal and Marine Ecological Classification Standard (CMECS), developed by representatives from a consortium of federal agencies. CMECS is the U.S. government standard for marine habitat characterization. The standard provides an ecologically relevant structure for biologic, geologic, chemical, and physical habitat attributes. This map illustrates the geoform and substrate components of the standard. This map was derived from geologic and geomorphic map units by translation of the unit description into the best-fit values of CMECS classes. The CMECS classes are documented at https://www.fgdc.gov/standards/projects/FGDC-standards-projects/cmecs-folder/CMECS_Version_06-2012_FINAL.pdf.
Folds--Offshore of Gaviota Map Area, California
공공데이터포털
This part of DS 781 presents fold data for the geologic and geomorphic map of the Offshore of Gaviota map area, California. The vector data file is included in "Folds_OffshoreGaviota.zip," which is accessible from https://doi.org/10.5066/F7TH8JWJ. In the offshore part of the map area, closely-spaced seismic-reflection profiles image many shallow, west-northwest striking folds that have variable geometry, length, amplitude, continuity, and wavelength. The two longest folds, the 17-km-long Molino anticline and the 22-km-long Government Point syncline, are truncated by the south strand of the Santa Ynez fault to the west and east, respectively. These regionally extensive folds and many shorter, west-trending structures are probably rooted in blind thrusts and backthrusts in the hanging wall above the Pitas Point-North Channel fault system.
Seafloor character--Offshore of Gaviota Map Area, California
공공데이터포털
This part of DS 781 presents data for the Seafloor character map of the Offshore of Gaviota map area, California. The vector data file is included in "SeafloorCharacter_OffshoreGaviota.zip," which is accessible from https://doi.org/10.5066/F7TH8JWJ. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Hartwell, S.R., Golden, N.E., Kvitek, R.G., and Davenport, C.W. (S.Y. Johnson and S.A. Cochran, eds.), 2018, California State Waters Map Series-Offshore of Gaviota, California: U.S. Geological Survey Open-File Report 2018-1023, pamphlet 41 p., 9 sheets, scale 1:24,000, https://doi.org/10.3133/ofr20181023. This raster-format seafloor-character map shows five substrate classes in the Offshore of Gaviota map area, California. The substrate classes mapped in this area have been colored to indicate which of the following California Marine Life Protection Act depth zones and the Coastal and Marine Ecological Classification Standard (CMECS) slope classes they belong: Depth Zone 2 (intertidal to 30 m), Depth Zone 3 (30 to 100 m), Depth Zone 4 (100 to 200 m), Slope Class 1 (0 degrees - 5 degrees; flat), and Slope Class 2 (5 degrees - 30 degrees; sloping). Depth Zone 1 (intertidal), Depth Zone 5 (greater than 200 m), and Slope Classes 3 and 4 (greater than 30 degrees) are not present in this map area. The map is created using a supervised classification method described by Cochrane (2008), using multibeam echosounder (MBES) bathymetry and backscatter data collected and processed between 1998 and 2014. References Cited: Cochrane, G.R., 2008, Video-supervised classification of sonar data for mapping seafloor habitat, in Reynolds, J.R., and Greene, H.G., eds., Marine habitat mapping technology for Alaska: Fairbanks, University of Alaska, Alaska Sea Grant College Program, p. 185-194, available at http://doc.nprb.org/web/research/research%20pubs/615_habitat_mapping_workshop/Individual%20Chapters%20High-Res/Ch13%20Cochrane.pdf.
Geology and geomorphology--Offshore of San Francisco Map Area, California
공공데이터포털
This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of San Francisco map area, California. The polygon shapefile is included in "Geology_OffshoreSanFrancisco.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanFrancisco/data_catalog_OffshoreSanFrancisco.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D., Golden, N.E., Hartwell, S.R., Endris, C.A., Manson, M.W., Sliter, R.W., Kvitek, R.G., Watt, J.T., Ross, S.L., and Bruns, T.R. (G.R. Cochrane and S.A. Cochran, eds.), 2015, California State Waters Map Series—Offshore of San Francisco, California (ver. 1.1, June 2015): U.S. Geological Survey Open-File Report 2015–1068, pamphlet 39 p., 10 sheets, scale 1:24,000, https://dx.doi.org/10.3133/ofr20151068. Marine geology and geomorphology was mapped in the Offshore of San Francisco map area, California, from approximate Mean High Water (MHW) to the 3-nautical-mile limit of California's State Waters. Offshore geologic units were delineated on the basis of integrated analyses of adjacent onshore geology with multibeam bathymetry and backscatter imagery, seafloor-sediment and rock samples, digital camera and video imagery, and high-resolution seismic-reflection profiles.
Geology and geomorphology--Offshore of San Gregorio Map Area, California
공공데이터포털
This part of SIM 3306 presents data for the geologic and geomorphic map of the Offshore of San Gregorio map area, California. The vector data file is included in "Geology_OffshoreSanGregorio.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanGregorio/data_catalog_OffshoreSanGregorio.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Greene, H.G., Watt, J.T., Golden, N.E., Endris, C.A., Phillips, E.L., Hartwell, S.R., Johnson, S.Y., Kvitek, R.G., Erdey, M.D., Bretz, C.K., Manson, M.W., Sliter, R.W., Ross, S.L., Dieter, B.E., and Chin, J.L. (G.R. Cochrane and S.A. Cochran, eds.), 2014, California State Waters Map Series—Offshore of San Gregorio, California: U.S. Geological Survey Scientific Investigations Map 3306, pamphlet 38 p., 10 sheets, scale 1:24,000, https://doi.org/10.3133/sim3306. Marine geology and geomorphology was mapped in the Offshore of San Gregorio map area, California, from approximate Mean High Water (MHW) to the 3-nautical-mile limit of California's State Waters. Offshore geologic units were delineated on the basis of integrated analyses of adjacent onshore geology with multibeam bathymetry and backscatter imagery, seafloor-sediment and rock samples, digital camera and video imagery, and high-resolution seismic-reflection profiles.
California State Waters Map Series--Offshore of Gaviota Web Services
공공데이터포털
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Gaviota map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at
Faults--Offshore of Gaviota Map Area, California
공공데이터포털
This part of DS 781 presents fault data for the geologic and geomorphic map of the Offshore of Gaviota map area, California. The vector data file is included in "Faults_OffshoreGaviota.zip," which is accessible from https://doi.org/10.5066/F7TH8JWJ. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Hartwell, S.R., Golden, N.E., Kvitek, R.G., and Davenport, C.W. (S.Y. Johnson and S.A. Cochran, eds.), 2018, California State Waters Map Series—Offshore of Gaviota, California: U.S. Geological Survey Open-File Report 2018–1023, pamphlet 41 p., 9 sheets, scale 1:24,000, https://doi.org/10.3133/ofr20181023. The southwest-striking south strand of the Santa Ynez fault obliquely cuts the shelf in the western part of the map area. As mapped onshore by Dibblee (1950, 1988a) this fault is unique among Santa Barbara fold belt structures in that it obliquely crosses the Santa Ynez Mountains and the dominant east-west structural grain. The fault was difficult to map in the offshore, even with our dense seismic-reflection data coverage, because the pre-LGM section on the shelf includes massive "reflection free" zones, probably associated with gas or steep dips, and the adjacent slope is mainly underlain by massive to chaotic seismic facies of the Conception Fan. References Cited: Dibblee, T.W., 1988a, Geologic map of the Solvang and Gaviota quadrangles, Santa Barbara County, California, edited by H.E. Ehrenspeck (1988): Dibblee Geological Foundation, Map DF-16, scale 1:24,000. Dibblee, T.W., Jr., 1950, Geology of southwestern Santa Barbara County, California, Point Arguello, Lompoc, Point Conception, Los Olivos, and Gaviota quadrangles: California Division of Mines and Geology Bulletin 150, 95 p., scale 1:62,500.
Geology and geomorphology--Offshore of Santa Barbara, California
공공데이터포털
This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Santa Barbara map area, California. The vector data file is included in "Geology_OffshoreSantaBarbara.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSantaBarbara/data_catalog_OffshoreSantaBarbara.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Greene, H.G., Krigsman, L.M., Kvitek, R.G., Dieter, B.E., Endris, C.A., Seitz, G.G., Sliter, R.W., Erdey, M.E., Gutierrez, C.I., Wong, F.L., Yoklavich, M.M., Draut, A.E., Hart, P.E., and Conrad, J.E. (S.Y. Johnson and S.A. Cochran, eds.), 2013, California State Waters Map Series—Offshore of Santa Barbara, California: U.S. Geological Survey Scientific Investigations Map 3281, 45 p., 11 sheets, scale 1:24,000, https://doi.org/10.3133/sim3281. Marine geology and geomorphology were mapped in the Offshore of Santa Barbara map area, California, from approximate Mean High Water (MHW) to the 3-nautical-mile limit of California's State Waters. Offshore geologic units were delineated on the basis of integrated analyses of adjacent onshore geology with multibeam bathymetry and backscatter imagery, seafloor-sediment and rock samples, digital camera and video imagery, and high-resolution seismic-reflection profiles.
Geology and geomorphology--Offshore of Ventura, California
공공데이터포털
This part of DS 781 presents geologic data of the Offshore of Ventura map area, California. The vector data file is included in "Geology_OffshoreVentura.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreVentura/data_catalog_OffshoreVentura.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Seitz, G.G., Gutierrez, C.I., Sliter, R.W., Erdey, M.D., Wong, F.L., Yoklavich, M.M., Draut, A.E., and Hart, P.E. (S.Y. Johnson and S.A. Cochran, eds.), 2013, California State Waters Map Series—Offshore of Ventura, California: U.S. Geological Survey Scientific Investigations Map 3254, pamphlet 42 p., 11 sheets, scale 1:24,000, https://doi.org/10.3133/sim3254. Marine geology and geomorphology were mapped in the Offshore of Carpinteria map area, California, from approximate Mean High Water (MHW) to the 3-nautical-mile limit of California's State Waters. Offshore geologic units were delineated on the basis of integrated analyses of adjacent onshore geology with multibeam bathymetry and backscatter imagery, seafloor-sediment and rock samples, digital camera and video imagery, and high-resolution seismic-reflection profiles.