데이터셋 상세
미국
HaloSat Master Catalog
This table records high-level information for the observations obtained with HaloSat and provides access to the HaloSat data archive. HaloSat is the first astrophysics-focused CubeSat funded by NASA's Astrophysics Division (PI P. Kaaret, University of Iowa). HaloSat is designed to map soft X-ray oxygen line emissions across the sky in order to constrain the mass and spatial distribution of hot gas in the Milky Way. HaloSat was launched from the NASA Wallops Flight Facility and delivered to the International Space Station on May 21, 2018. HaloSat was deployed into orbit on July 13, 2018. The spacecraft and science instrument commissioning phase ended on October 16, 2018, and science operations started after that. Initially approved to operate for 12 months, HaloSat successfully collected science data from October 15, 2018, until September 29, 2020, effectively doubling the mission lifetime. HaloSat reentered Earth's atmosphere on January 4, 2021. To trace the Galactic halo, HaloSat is equipped with a non-focusing instrument, comprised of three independent silicon drift detectors (SDD14, SDD38, SDD54) operating in the energy range of 0.4 - 7.0 keV with a field of view of 10 deg in diameter and an energy resolution of 84.8 +/- 2.7 eV at 677 eV and 137.4 +/- 0.9 eV at 5895 eV. The observing strategy was to divide the sky into 333 positions (HaloSat fields) and acquire a minimum of 8000 detector-seconds for each position throughout the initial 12 months of operations. After launch, additional positions were added to the initial 333 positions. HaloSat observations of the chosen fields are divided in intervals of time such that the data files do not exceed 2GB. Each observation is labeled with a sequence number. This database table contains one record for each sequence number and includes parameters related to the observation. The contents of this database table are generated at the HEASARC using information from the data files. The table was last updated in April 2023. This is a service provided by NASA HEASARC .
데이터 정보
연관 데이터
HaloSat Time Log
공공데이터포털
This table records the start and stop times of the uninterrupted observation intervals obtained by the three detectors on board of HaloSat and provides access to the HaloSat observations containing these intervals. HaloSat is the first astrophysics-focused CubeSat funded by NASA's Astrophysics Division (PI P. Kaaret, University of Iowa). HaloSat is designed to map soft X-ray oxygen line emissions across the sky in order to constrain the mass and spatial distribution of hot gas in the Milky Way. HaloSat was launched from the NASA Wallops Flight Facility and delivered to the International Space Station on May 21, 2018. HaloSat was deployed into orbit on July 13, 2018 and collected science data from October 15, 2018, until September 29, 2020. HaloSat reentered Earth's atmosphere on January 4, 2021. To trace the Galactic halo, HaloSat is equipped with a non-focusing instrument, comprised of three independent silicon drift detectors (SDD14, SDD38, SDD54) operating in the energy range of 0.4 - 7.0 keV with a field of view of 10 deg in diameter and an energy resolution of 84.8 +/- 2.7 eV at 677 eV and 137.4 +/- 0.9 eV at 5895 eV. The HaloSat data are divided by specific positions in the sky and labeled with a number, the sequence number. Each sequence number contains all data for a specific sky position collected during the HaloSat operations therefore each observation contains time intervals that may be apart day, week or months. This database table instead has in each record the start and stop times of one uninterrupted time interval of good data for a specific detector. This table therefore enables searches of the HaloSat data for a specific time event detected by different obsevatories. The contents of this database table are generated at the HEASARC using information from the data files. The table was created in April 2023. This is a service provided by NASA HEASARC .
HerMES 500 micron StarFinder Catalog
공공데이터포털
The Herschel Multi-tiered Extragalactic Survey (HerMES) is a legacy programme (KPGT_soliver1) designed to map a set of nested fields totalling 380 sq. deg. Fields range in size from 0.01 to 20 sq. deg., using SPIRE at 250, 350 and 500 microns. These bands cover the peak of the redshifted thermal spectral energy distribution from interstellar dust and thus capture the reprocessed optical and ultraviolet radiation from star formation that has been absorbed by dust, and are critical for forming a complete multiwavelength understanding of galaxy formation and evolution.
HerMES 350 micron StarFinder Catalog
공공데이터포털
The Herschel Multi-tiered Extragalactic Survey (HerMES) is a legacy programme (KPGT_soliver1) designed to map a set of nested fields totalling 380 sq. deg. Fields range in size from 0.01 to 20 sq. deg., using SPIRE at 250, 350 and 500 microns. These bands cover the peak of the redshifted thermal spectral energy distribution from interstellar dust and thus capture the reprocessed optical and ultraviolet radiation from star formation that has been absorbed by dust, and are critical for forming a complete multiwavelength understanding of galaxy formation and evolution.
HerMES 500 micron SUSSEXtractor Catalog
공공데이터포털
The Herschel Multi-tiered Extragalactic Survey (HerMES) is a legacy programme (KPGT_soliver1) designed to map a set of nested fields totalling 380 sq. deg. Fields range in size from 0.01 to 20 sq. deg., using SPIRE at 250, 350 and 500 microns. These bands cover the peak of the redshifted thermal spectral energy distribution from interstellar dust and thus capture the reprocessed optical and ultraviolet radiation from star formation that has been absorbed by dust, and are critical for forming a complete multiwavelength understanding of galaxy formation and evolution.
HerMES 250 micron StarFinder Catalog
공공데이터포털
The Herschel Multi-tiered Extragalactic Survey (HerMES) is a legacy programme (KPGT_soliver1) designed to map a set of nested fields totalling 380 sq. deg. Fields range in size from 0.01 to 20 sq. deg., using SPIRE at 250, 350 and 500 microns. These bands cover the peak of the redshifted thermal spectral energy distribution from interstellar dust and thus capture the reprocessed optical and ultraviolet radiation from star formation that has been absorbed by dust, and are critical for forming a complete multiwavelength understanding of galaxy formation and evolution.
Spitzer Space Telescope Observation Log
공공데이터포털
This database table contains the Spitzer Space Telescope (SST) log of executed and scheduled observations, and is updated on a weekly basis. Spitzer is the fourth and final element in NASA's family of Great Observatories and represents an important scientific and technical bridge to NASA's Astronomical Search for Origins program. The SST Observatory carries an 85-cm cryogenic telescope and 3 cryogenically cooled science instruments capable of performing imaging and spectroscopy in the 3.6 to 160 micron (µm) range. Spitzer was launched on a Delta 7920H from Cape Canaveral into an Earth-trailing heliocentric orbit in August 2003. While the Spitzer cryogenic lifetime requirements are 2.5 years, current estimates indicate that achieving a goal of a 5-year cryogenic mission is possible. For more overview information, refer to the Spitzer Science Center (SSC) Overview at http://ssc.spitzer.caltech.edu/spitzermission/. The purpose of this HEASARC table is to help users, particularly those in the high-energy astronomy community, learn about which targets Spitzer has observed or will shortly observe. This table does not at this time have links from table entries to Spitzer data products. Once a particular Spitzer dataset of interest is identified, the SSC Archives/Analysis web page at http://ssc.spitzer.caltech.edu/archanaly/ should be used to access the dataset. The information in this table has been derived from the following files obtained from the SSC website:

The schedule of Spitzer science observations as executed:

 http://irsa.ipac.caltech.edu/data/SPITZER/docs/files/spitzer/spitzer_obslog.txt 
The list of all approved Spitzer science programs:
 http://irsa.ipac.caltech.edu/data/SPITZER/docs/files/spitzer/spitzer_programs.txt 
Notice that this table contains primarily observations (identified by their AOR key value) from the first URL above. A given observation should appear only once in this HEASARC table. The HEASARC checks these URLs for modifications periodically and updates the table whenever changes are detected. This is a service provided by NASA HEASARC .
MAXI Master Catalog
공공데이터포털
HerMES 350 micron SUSSEXtractor Catalog
공공데이터포털
The Herschel Multi-tiered Extragalactic Survey (HerMES) is a legacy programme (KPGT_soliver1) designed to map a set of nested fields totalling 380 sq. deg. Fields range in size from 0.01 to 20 sq. deg., using SPIRE at 250, 350 and 500 microns. These bands cover the peak of the redshifted thermal spectral energy distribution from interstellar dust and thus capture the reprocessed optical and ultraviolet radiation from star formation that has been absorbed by dust, and are critical for forming a complete multiwavelength understanding of galaxy formation and evolution.
HerMES 250 micron SUSSEXtractor Catalog
공공데이터포털
The Herschel Multi-tiered Extragalactic Survey (HerMES) is a legacy programme (KPGT_soliver1) designed to map a set of nested fields totalling 380 sq. deg. Fields range in size from 0.01 to 20 sq. deg., using SPIRE at 250, 350 and 500 microns. These bands cover the peak of the redshifted thermal spectral energy distribution from interstellar dust and thus capture the reprocessed optical and ultraviolet radiation from star formation that has been absorbed by dust, and are critical for forming a complete multiwavelength understanding of galaxy formation and evolution.