데이터셋 상세
미국
Hubble Ultra Deep Field Catalog
The Hubble Ultra Deep Field (UDF, Principle Investigator: Steven V. W. Beckwith) is a 400-orbit Hubble Space Telescope (HST) Cycle 12 program to image a single field of the Wide Field Camera (WFC) of the Advanced Camera for Surveys (ACS) in four filters: F435W (B), F606W (V), F775W (i), and F850LP (z). The observations took place over 4 months from September 2003 to January 2004 under two program IDs: 9978 and 10086. The observations consist of half-orbit exposures, cycling through each of the filters in a 4-point dither pattern to provide sub-pixel sampling, as well as a larger-scale 3-point line pattern to cover the 2 second of arc gap between the two ACS/WFC chips. The total exposure times are summarized below, with typical exposure times of 1200s for individual images. The AB magnitude zero-points for ACS are current as of March 2004. <pre> Number of Number of Total Exp. AB mag. Orbits Exposures Time (s) zero-point B (F435W): 56 112 134880 25.673 V (F606W): 56 112 135320 26.486 i (F775W): 144 288 347110 25.654 z (F850LP): 144 288 346620 24.862 </pre> This HEASARC Browse table contains the list of sources found in the deepest UDF image, the i-band image. The formal i-band catalog contains a total of 10,040 sources. A visual inspection of all the sources revealed an additional 5 spurious sources (which do not form part of the catalog). Moreover, the deblending algorithms in SExtractor caused an additional 100 sources to be missed, owing to their proximity to brighter sources. These sources were identified manually, and formally added by doing another SExtractor run with considerably different deblending parameters, in order to detect them all. An initial list of 208 sources was produced, which was then reduced to a total of 100 sources after visual inspection and rejection of sources that were clearly part of previously identified sources. These additional sources are denoted by ID numbers 20001 - 20208. Although the i-band image is the deepest image, there remain additional sources that were not detected in i-band, even though they may be detected in one of the other bands. Therefore, the authors produced a second catalog based on detection in the z-band image (not part of the present table), and an additional 39 sources are included from this catalog that were detected at > 10 sigma in the z-band image, but were not in the catalog that was run using the i-band image for detection. These additional sources are denoted by ID numbers above 30000. More details are found in the file <a href="https://cdsarc.cds.unistra.fr/ftp/cats/II/258/intro.txt">https://cdsarc.cds.unistra.fr/ftp/cats/II/258/intro.txt</a> or from the UDF home page at <a href="http://www.stsci.edu/hst/udf/">http://www.stsci.edu/hst/udf/</a>. This table was created by the HEASARC in May 2005 based on CDS table II/258/udf-i.dat. This is a service provided by NASA HEASARC .
데이터 정보
연관 데이터
Australia Telescope Hubble Deep Field-South Optical Identifications Catalog
공공데이터포털
The Australia Telescope Hubble Deep Field-South (ATHDF-S) survey of the Hubble Deep Field-South (HDF-S) reaches sensitivities of ~ 10 µJy (µJy) at 1.4, 2.5, 5.2, and 8.7 GHz, making the ATHDF-S one of the deepest surveys ever performed with the Australia Telescope Compact Array (ATCA). This table contains the optical identifications of the ATHDF-S radio sources (the radio data from which are available in summarized form in the HEASARC ATHDFSCCAT table) using data from the literature. The authors find that ~ 66% of the radio sources have optical counterparts to an I magnitude of 23.5 mags. Deep Hubble Space Telescope (HST) imaging of the area identifies a further 12% of the radio sources. In this table, the authors present data from new spectroscopic observations for 98 of the radio sources and supplement these spectroscopic redshifts with photometric ones calculated from five-band optical imaging. The radio observations and data reduction are detailed in Papers I-III of this series:
 I = Norris et al., 2005, AJ, 130, 1358; II = Huynh et al., 2005, AJ, 130, 1373, available at the HEASARC as the ATHDFS1P4G table; III = Huynh et al., 2007, AJ, 133, 1331, available at the HEASARC as the ATHDFSCCAT and ATHDFS3FRQ tables. 
Palunas et al. (2000, ApJ, 541, 61) observed the HDF-S region using the Big Throughput Camera (BTC) on the Cerro Tololo Inter-American Observatory (CTIO) 4m during 1998 September. Images were taken in the Sloan Digital Sky Survey (SDSS) u, Johnson B and V, and Cousins R and I filters. In addition, the authors obtained spectra of the ATHDF-S radio sources over two service nights in 2001 July and 2003 October using the multi-fiber 2dF instrument of the Anglo-Australian Telescope (AAT). They acquired low-resolution (9 Angstrom) spectra over the wavelength range from 3800 to 8000 Angstroms. This table was created by the HEASARC in December 2012 based on the
CDS Catalog J/AJ/135/2470 files table1.dat and table10.dat which contain the entire contents of Tables 1 and 10 from the published paper. This is a service provided by NASA HEASARC .
Australia Telescope Hubble Deep Field-South Combined Source Catalog
공공데이터포털
Deep radio observations of a wide region centered on the Hubble Deep Field-South (HDF-S) have been performed, providing one of the most sensitive sets of radio observations acquired on the Australia Telescope Compact Array (ATCA) to date. A central rms of ~ 10 µJy is reached at four frequencies (1.4, 2.5, 5.2, and 8.7 GHz). In this table, the combined 4-frequency AT-HDFS Catalog including fluxes and spectral indices for sources detected at 1.4, 2.5, 5.2, and/or 8.7 GHz observations is presented to complement the single-frequency radio data for the 1.4 GHz observations which were presented in Paper II (Huynh et al., 2005, AJ, 130, 1373, available at the HEASARC as the ATHDFS1P4G table) in this series, and for the 2.5, 5.2, and/or 8.7 GHz observations which were presented in the reference paper (Paper III, Huynh et al., 2007, AJ, 133, 1331, available at the HEASARC as the ATHDFS3FRQ table). The details of the observations and data reduction are discussed in detail in Paper I of this series (Norris et al., 2005, AJ, 130, 1358) and summarized in Table 1 of the reference paper. The radio observations were carried out by the ATCA over 4 years from 1998 to 2001. The observations at 1.4 and 2.5 GHz consist of single pointings centered on RA (J2000.0) = 22h 33m 25.96s, Dec (J2000.0) = -60o 38' 09.0". The observations at 5.2 and 8.7 GHz consist of single pointings centered on RA (J2000.0) = 22h 32m 56.22s, Dec (J2000.0) = -60o 33' 02.7". The 5.2 and 8.7 GHz observations are centered on the HST WFPC field, while the 1.4 and 2.5 GHz observations were pointed halfway between the WFPC field and a bright confusing source to allow the bright source to be well cleaned from the 1.4 and 2.5 GHz images. This HEASARC table contains the final consolidated catalog of 473 individual sources and gives the flux densities at all frequencies for each individual radio source. It contains the 466 1.4-GHz sources from Paper II together with 5 unmatched 2.5-GHz sources and 2 unmatched 8.7-GHz sources. The procedure that the authors used to construct this catalog is discussed in Section 6 of the reference paper. This table was created by the HEASARC in December 2012 based on the CDS Catalog J/AJ/130/1371 file table9.dat which contains the entire contents of Table 9 from the published paper. This is a service provided by NASA HEASARC .
Australia Telescope Hubble Deep Field-South 2.5, 5.2 and 8.7-GHz Source Catalog
공공데이터포털
Deep radio observations of a wide region centered on the Hubble Deep Field-South (HDF-S) have been performed, providing one of the most sensitive sets of radio observations acquired on the Australia Telescope Compact Array (ATCA) to date. A central rms of ~ 10 µJy is reached at four frequencies (1.4, 2.5, 5.2, and 8.7 GHz). In this table, the full source catalogs from the 2.5, 5.2, and 8.7 GHz observations are presented to complement the data for the 1.4 GHz observations which were presented in Paper II (Huynh et al., 2005, AJ, 130, 1373, available at the HEASARC as the ATHDFS1P4G table) in this series, along with a detailed analysis of image quality and noise. The authors also have produced a consolidated catalog of all of their ATCA observations of the HDF-S by matching sources across all four of the frequencies in their survey (available at the HEASARC as the ATHDFSCCAT table). The details of the observations and data reduction are discussed in detail in Paper I of this series (Norris et al., 2005, AJ, 130, 1358) and summarized in Table 1 of the reference paper. The observations consist of single pointings centered on RA (J2000.0) = 22h 33m 25.96s, Dec (J2000.0) = -60o 38' 09.0" (2.5 GHz), and RA (J2000.0) = 22h 32m 56.22s, Dec (J2000.0) = -60o 33' 02.7" (5.2 and 8.7 GHz). The 5.2 and 8.7 GHz observations are centered on the HST WFPC field, while the 2.5 GHz observations were pointed halfway between the WFPC field and a bright confusing source to allow the bright source to be well cleaned from the 2.5 GHz image. At 5 sigma, the 5.2 and 8.7 GHz catalogs have over 96% reliability. At 2.5 GHz, the authors have enough statistics to examine the 5 - 5.5 sigma sources, and find that these are only about 40% reliable. With a SNR greater than 5.5 sigma, the 2.5 GHz catalog would have about 99% reliability. The authors thus cut off the catalogs at 5.5, 5, and 5 sigma for 2.5, 5.2, and 8.7 GHz, respectively. The final catalogs have 71, 24, and 6 sources at 2.5, 5.2, and 8.7 GHz, respectively. Given a prior 1.4 GHz position, it may be feasible to push the detection limit lower than 5 sigma. The authors searched for low-SNR sources by matching 3 - 5 sigma sources that lie within 2 sigma positional uncertainty of a 1.4 GHz source. The positional uncertainty was determined by adding the average 1.4 GHz uncertainty (1.1") in quadrature with the positional uncertainty of a 3 sigma source. At 2.5 GHz the allowed positional offset is 3.8", and for 5.2 and 8.7 GHz it is 2.8". Thus, there are 71, 18, and 2 sources at 2.5, 5.2, and 8.7 GHz, respectively, which are low-SNR high-frequency counterparts to 1.4 GHz sources. The authors included these sources in supplementary catalogs. This HEASARC table contains all 101 primary sources detected at 2.5, 5.2, and 8.7 GHz, as well as the 91 supplementary sources described above (the latter are flagged by having source_flag values of 'S'), for a grand total of 192 radio sources. This table was created by the HEASARC in December 2012 based on the CDS Catalog J/AJ/130/1371 files table47.dat, table58.dat and table68.dat, which contain the entire contents of Tables 4, 5, 6, 7 and 8 from the published paper. This is a service provided by NASA HEASARC .
Australia Telescope Hubble Deep Field-South 1.4-GHz Source Catalog
공공데이터포털
Hubble Space Telescope
공공데이터포털
Hubble Space Telescope (HST) is an orbiting astronomical observatory operating from the near-infrared into the ultraviolet. Launched in 1990 and scheduled to operate through 2010, HST carries and has carried a wide variety of instruments producing imaging, spectrographic, astrometric, and photometric data through both pointed and parallel observing programs. MAST is the primary archive and distribution center for HST data, distributing science, calibration, and engineering data to HST users and the astronomical community at large. Over 100 000 observations of more than 20 000 targets are available for retrieval from the Archive.
VLA Hubble Deep Field 20-cm Source Catalog
공공데이터포털
The authors have conducted a deep radio survey with the Very Large Array (VLA) at 1.4 GHz of a region containing the Hubble Deep Field (HDF). This survey overlaps previous observations at 8.5 GHz allowing them to investigate the radio spectral properties of microJansky sources to flux densities greater than 40 µJy (µJy) at 1.4 GHz and greater than 8 uJy at 8.5 GHz. A total of 371 sources have been catalogued at 1.4 GHz as part of a complete sample within 20 arcminutes of the HDF. The differential source count for this region is only marginally sub-Euclidean and is given by n(S) = (8.3 +/- 0.4) S^(-2.4 +/- 0.1) sr-1 Jy-1. Above about 100 uJy the radio source count is systematically lower in the HDF as compared to other fields. The authors conclude that there is clustering in this radio sample on size scales of 1 to 40 arcminutes. The 1.4 GHz-selected sample shows that the radio spectral indices are preferentially steep (mean spectral index of 0.85) and that the sources are moderately extended with average angular size Theta = 1.8". Optical identification with disk-type systems at z ~ 0.1 - 1 suggests that synchrotron emission, produced by supernovae remnants, is powering the radio emission in the majority of sources. In 1996 November, the authors observed a field centered on the Hubble Deep Field (RA, Dec (J2000.0) = (12h 36m 49.4s, 62o 12' 58.00") for a total of 50 hours at 20 cm in the A configuration of the VLA. They reached an rms noise level near the center of the field of 7.5 uJy. They adopted 40 uJy as the formal completeness limit over the entire 1 degree field in their untapered naturally weighted 2 arcseconds image. The authors identified 314 sources within 20 arcminutes of the field center (20% power contour). They found 57 additional sources within this same region (presumably resolved at 2" resolution) in lower resolution (3.5 and 6") tapered images above completeness levels of 50 uJy at 3.5" resolution and 75 uJy at 6" resolution, making a grand total of 371 radio sources detected at 1.4 GHz within 20 arcminutes of the phase center of the field. This table was created by the HEASARC in June 2012 based on CDS Catalog J/ApJ/533/611 file table2.dat. This is a service provided by NASA HEASARC .
Hubble Source Catalog Detailed Search
공공데이터포털
The Hubble Source Catalog (HSC) is designed to optimize science from the Hubble Space Telescope by combining the tens of thousands of visit-based source lists in the Hubble Legacy Archive (HLA) into a single master catalog.The Hubble Source Catalog (HSC) detailed search displays an entry for each separate detection (or nondetection if nothing is found at that position) using all the relevant Hubble observations for a given object (i.e., different filters, detectors, separate visits).The catalog currently contains over 100 million entries.
Faint Object Camera
공공데이터포털
The Faint Object Camera (FOC) was one of the 4 original axial instruments on the Hubble Space Telescope (HST). FOC is used to make high-resolution observations of faint sources at UV and visible wavel
Wide Field Planetary Camera 1
공공데이터포털
The WF/PC-1 was used from April 1990 to November 1993, to obtain high resolution images of astronomical objects over a relatively wide field of view and a broad range of wavelengths (1150 to 11,000 Angstroms).
Hubble Source Catalog Summary Search
공공데이터포털
The Hubble Source Catalog (HSC) is designed to optimize science from the Hubble Space Telescope by combining the tens of thousands visit-based source lists in the Hubble Legacy Archive (HLA) into a single master catalog. The HSC Summary search displays a single row entry for each object,as defined by a set of detections that have been cross-matched and hence are believed to be a single object.Averaged values for magnitudes and other relevant parameters are provided.The catalog currently contains over 16 million entries.