데이터셋 상세
미국
LISTOS Westport Ground Site Data
LISTOS_Ground_Westport_Data is the Long Island Sound Tropospheric Ozone Study (LISTOS) Wesport ground site data collected during the LISTOS field campaign. This product is a result of a joint effort across multiple agencies, including NASA, NOAA, the EPA Northeast States for Coordinated Air Use Management (NESCAUM), Maine Department of Environmental Protection, New Jersey Department of Environmental Protection, New York State Department of Environmental Conservation and several research groups at universities. Data collection is complete.The New York City (NYC) metropolitan area (comprised of portions of New Jersey, New York, and Connecticut in and around NYC) is home to over 20 million people, but also millions of people living downwind in neighboring states. This area continues to persistently have challenges meeting past and recently revised federal health-based air quality standards for ground-level ozone, which impacts the health and well-being of residents living in the area. A unique feature of this chronic ozone problem is the pollution transported in a northeast direction out of NYC over Long Island Sound. The relatively cool waters of Long Island Sound confine the pollutants in a shallow and stable marine boundary layer. Afternoon heating over coastal land creates a sea breeze that carries the air pollution inland from the confined marine layer, resulting in high ozone concentrations in Connecticut and, at times, farther east into Rhode Island and Massachusetts. To investigate the evolving nature of ozone formation and transport in the NYC region and downwind, Northeast States for Coordinated Air Use Management (NESCAUM) launched the Long Island Sound Tropospheric Ozone Study (LISTOS). LISTOS was a multi-agency collaborative study focusing on Long Island Sound and the surrounding coastlines that continually suffer from poor air quality exacerbated by land/water circulation. The primary measurement observations took place between June-September 2018 and include in-situ and remote sensing instrumentation that were integrated aboard three aircraft, a network of ground sites, mobile vehicles, boat measurements, and ozonesondes. The goal of LISTOS was to improve the understanding of ozone chemistry and sea breeze transported pollution over Long Island Sound and its coastlines. LISTOS also provided NASA the opportunity to test air quality remote sensing retrievals with the use of its airborne simulators (GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator (GCAS), and Geostationary Trace gas and Aerosol Sensory Optimization (GeoTASO)) for the preparation of the Tropospheric Emissions; Monitoring of Pollution (TEMPO) observations for monitoring air quality from space. LISTOS also helped collaborators in the validation of Tropospheric Monitoring Instrument (TROPOMI) science products, with use of airborne- and ground-based measurements of ozone, NO2, and HCHO.
연관 데이터
LISTOS Bronx Pfizer Ground Site Data
공공데이터포털
LISTOS_Ground_BronxPfizer_Data is the Long Island Sound Tropospheric Ozone Study (LISTOS) ground site data collected at the Bronx Pfizer ground site during the LISTOS field campaign. This product is a result of a joint effort across multiple agencies, including NASA, NOAA, the EPA Northeast States for Coordinated Air Use Management (NESCAUM), Maine Department of Environmental Protection, New Jersey Department of Environmental Protection, New York State Department of Environmental Conservation and several research groups at universities. Data collection is complete.The New York City (NYC) metropolitan area (comprised of portions of New Jersey, New York, and Connecticut in and around NYC) is home to over 20 million people, but also millions of people living downwind in neighboring states. This area continues to persistently have challenges meeting past and recently revised federal health-based air quality standards for ground-level ozone, which impacts the health and well-being of residents living in the area. A unique feature of this chronic ozone problem is the pollution transported in a northeast direction out of NYC over Long Island Sound. The relatively cool waters of Long Island Sound confine the pollutants in a shallow and stable marine boundary layer. Afternoon heating over coastal land creates a sea breeze that carries the air pollution inland from the confined marine layer, resulting in high ozone concentrations in Connecticut and, at times, farther east into Rhode Island and Massachusetts. To investigate the evolving nature of ozone formation and transport in the NYC region and downwind, Northeast States for Coordinated Air Use Management (NESCAUM) launched the Long Island Sound Tropospheric Ozone Study (LISTOS). LISTOS was a multi-agency collaborative study focusing on Long Island Sound and the surrounding coastlines that continually suffer from poor air quality exacerbated by land/water circulation. The primary measurement observations took place between June-September 2018 and include in-situ and remote sensing instrumentation that were integrated aboard three aircraft, a network of ground sites, mobile vehicles, boat measurements, and ozonesondes. The goal of LISTOS was to improve the understanding of ozone chemistry and sea breeze transported pollution over Long Island Sound and its coastlines. LISTOS also provided NASA the opportunity to test air quality remote sensing retrievals with the use of its airborne simulators (GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator (GCAS), and Geostationary Trace gas and Aerosol Sensory Optimization (GeoTASO)) for the preparation of the Tropospheric Emissions; Monitoring of Pollution (TEMPO) observations for monitoring air quality from space. LISTOS also helped collaborators in the validation of Tropospheric Monitoring Instrument (TROPOMI) science products, with use of airborne- and ground-based measurements of ozone, NO2, and HCHO.
LISTOS CCNY Ground Site Data
공공데이터포털
LISTOS_Ground_CCNY_Data is the Long Island Sound Tropospheric Ozone Study (LISTOS) ground site data collected at the CCNY ground site during the LISTOS field campaign. This product is a result of a joint effort across multiple agencies, including NASA, NOAA, the EPA Northeast States for Coordinated Air Use Management (NESCAUM), Maine Department of Environmental Protection, New Jersey Department of Environmental Protection, New York State Department of Environmental Conservation and several research groups at universities. Data collection is complete.The New York City (NYC) metropolitan area (comprised of portions of New Jersey, New York, and Connecticut in and around NYC) is home to over 20 million people, but also millions of people living downwind in neighboring states. This area continues to persistently have challenges meeting past and recently revised federal health-based air quality standards for ground-level ozone, which impacts the health and well-being of residents living in the area. A unique feature of this chronic ozone problem is the pollution transported in a northeast direction out of NYC over Long Island Sound. The relatively cool waters of Long Island Sound confine the pollutants in a shallow and stable marine boundary layer. Afternoon heating over coastal land creates a sea breeze that carries the air pollution inland from the confined marine layer, resulting in high ozone concentrations in Connecticut and, at times, farther east into Rhode Island and Massachusetts. To investigate the evolving nature of ozone formation and transport in the NYC region and downwind, Northeast States for Coordinated Air Use Management (NESCAUM) launched the Long Island Sound Tropospheric Ozone Study (LISTOS). LISTOS was a multi-agency collaborative study focusing on Long Island Sound and the surrounding coastlines that continually suffer from poor air quality exacerbated by land/water circulation. The primary measurement observations took place between June-September 2018 and include in-situ and remote sensing instrumentation that were integrated aboard three aircraft, a network of ground sites, mobile vehicles, boat measurements, and ozonesondes. The goal of LISTOS was to improve the understanding of ozone chemistry and sea breeze transported pollution over Long Island Sound and its coastlines. LISTOS also provided NASA the opportunity to test air quality remote sensing retrievals with the use of its airborne simulators (GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator (GCAS), and Geostationary Trace gas and Aerosol Sensory Optimization (GeoTASO)) for the preparation of the Tropospheric Emissions; Monitoring of Pollution (TEMPO) observations for monitoring air quality from space. LISTOS also helped collaborators in the validation of Tropospheric Monitoring Instrument (TROPOMI) science products, with use of airborne- and ground-based measurements of ozone, NO2, and HCHO.
LISTOS Hammonasset Ground Site Data
공공데이터포털
LISTOS_Ground_Hammonasset_Data is the Long Island Sound Tropospheric Ozone Study (LISTOS) ground site data collected at the Hammonasset ground site during the LISTOS field campaign. This product is a result of a joint effort across multiple agencies, including NASA, NOAA, the EPA Northeast States for Coordinated Air Use Management (NESCAUM), Maine Department of Environmental Protection, New Jersey Department of Environmental Protection, New York State Department of Environmental Conservation and several research groups at universities. Data collection is complete.The New York City (NYC) metropolitan area (comprised of portions of New Jersey, New York, and Connecticut in and around NYC) is home to over 20 million people, but also millions of people living downwind in neighboring states. This area continues to persistently have challenges meeting past and recently revised federal health-based air quality standards for ground-level ozone, which impacts the health and well-being of residents living in the area. A unique feature of this chronic ozone problem is the pollution transported in a northeast direction out of NYC over Long Island Sound. The relatively cool waters of Long Island Sound confine the pollutants in a shallow and stable marine boundary layer. Afternoon heating over coastal land creates a sea breeze that carries the air pollution inland from the confined marine layer, resulting in high ozone concentrations in Connecticut and, at times, farther east into Rhode Island and Massachusetts. To investigate the evolving nature of ozone formation and transport in the NYC region and downwind, Northeast States for Coordinated Air Use Management (NESCAUM) launched the Long Island Sound Tropospheric Ozone Study (LISTOS). LISTOS was a multi-agency collaborative study focusing on Long Island Sound and the surrounding coastlines that continually suffer from poor air quality exacerbated by land/water circulation. The primary measurement observations took place between June-September 2018 and include in-situ and remote sensing instrumentation that were integrated aboard three aircraft, a network of ground sites, mobile vehicles, boat measurements, and ozonesondes. The goal of LISTOS was to improve the understanding of ozone chemistry and sea breeze transported pollution over Long Island Sound and its coastlines. LISTOS also provided NASA the opportunity to test air quality remote sensing retrievals with the use of its airborne simulators (GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator (GCAS), and Geostationary Trace gas and Aerosol Sensory Optimization (GeoTASO)) for the preparation of the Tropospheric Emissions; Monitoring of Pollution (TEMPO) observations for monitoring air quality from space. LISTOS also helped collaborators in the validation of Tropospheric Monitoring Instrument (TROPOMI) science products, with use of airborne- and ground-based measurements of ozone, NO2, and HCHO.
LISTOS New Haven Ground Site Data
공공데이터포털
LISTOS_Ground_NewHaven_Data is the Long Island Sound Tropospheric Ozone Study (LISTOS) ground site data collected at the New Haven ground site during the LISTOS field campaign. This product is a result of a joint effort across multiple agencies, including NASA, NOAA, the EPA Northeast States for Coordinated Air Use Management (NESCAUM), Maine Department of Environmental Protection, New Jersey Department of Environmental Protection, New York State Department of Environmental Conservation and several research groups at universities. Data collection is complete.The New York City (NYC) metropolitan area (comprised of portions of New Jersey, New York, and Connecticut in and around NYC) is home to over 20 million people, but also millions of people living downwind in neighboring states. This area continues to persistently have challenges meeting past and recently revised federal health-based air quality standards for ground-level ozone, which impacts the health and well-being of residents living in the area. A unique feature of this chronic ozone problem is the pollution transported in a northeast direction out of NYC over Long Island Sound. The relatively cool waters of Long Island Sound confine the pollutants in a shallow and stable marine boundary layer. Afternoon heating over coastal land creates a sea breeze that carries the air pollution inland from the confined marine layer, resulting in high ozone concentrations in Connecticut and, at times, farther east into Rhode Island and Massachusetts. To investigate the evolving nature of ozone formation and transport in the NYC region and downwind, Northeast States for Coordinated Air Use Management (NESCAUM) launched the Long Island Sound Tropospheric Ozone Study (LISTOS). LISTOS was a multi-agency collaborative study focusing on Long Island Sound and the surrounding coastlines that continually suffer from poor air quality exacerbated by land/water circulation. The primary measurement observations took place between June-September 2018 and include in-situ and remote sensing instrumentation that were integrated aboard three aircraft, a network of ground sites, mobile vehicles, boat measurements, and ozonesondes. The goal of LISTOS was to improve the understanding of ozone chemistry and sea breeze transported pollution over Long Island Sound and its coastlines. LISTOS also provided NASA the opportunity to test air quality remote sensing retrievals with the use of its airborne simulators (GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator (GCAS), and Geostationary Trace gas and Aerosol Sensory Optimization (GeoTASO)) for the preparation of the Tropospheric Emissions; Monitoring of Pollution (TEMPO) observations for monitoring air quality from space. LISTOS also helped collaborators in the validation of Tropospheric Monitoring Instrument (TROPOMI) science products, with use of airborne- and ground-based measurements of ozone, NO2, and HCHO.
LISTOS Yale Coastal Ground Site Data
공공데이터포털
LISTOS_Ground_YaleCoastal_Data is the Long Island Sound Tropospheric Ozone Study (LISTOS) ground site data collected at the Yale Coastal ground site during the LISTOS field campaign. This product is a result of a joint effort across multiple agencies, including NASA, NOAA, the EPA Northeast States for Coordinated Air Use Management (NESCAUM), Maine Department of Environmental Protection, New Jersey Department of Environmental Protection, New York State Department of Environmental Conservation and several research groups at universities. Data collection is complete.The New York City (NYC) metropolitan area (comprised of portions of New Jersey, New York, and Connecticut in and around NYC) is home to over 20 million people, but also millions of people living downwind in neighboring states. This area continues to persistently have challenges meeting past and recently revised federal health-based air quality standards for ground-level ozone, which impacts the health and well-being of residents living in the area. A unique feature of this chronic ozone problem is the pollution transported in a northeast direction out of NYC over Long Island Sound. The relatively cool waters of Long Island Sound confine the pollutants in a shallow and stable marine boundary layer. Afternoon heating over coastal land creates a sea breeze that carries the air pollution inland from the confined marine layer, resulting in high ozone concentrations in Connecticut and, at times, farther east into Rhode Island and Massachusetts. To investigate the evolving nature of ozone formation and transport in the NYC region and downwind, Northeast States for Coordinated Air Use Management (NESCAUM) launched the Long Island Sound Tropospheric Ozone Study (LISTOS). LISTOS was a multi-agency collaborative study focusing on Long Island Sound and the surrounding coastlines that continually suffer from poor air quality exacerbated by land/water circulation. The primary measurement observations took place between June-September 2018 and include in-situ and remote sensing instrumentation that were integrated aboard three aircraft, a network of ground sites, mobile vehicles, boat measurements, and ozonesondes. The goal of LISTOS was to improve the understanding of ozone chemistry and sea breeze transported pollution over Long Island Sound and its coastlines. LISTOS also provided NASA the opportunity to test air quality remote sensing retrievals with the use of its airborne simulators (GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator (GCAS), and Geostationary Trace gas and Aerosol Sensory Optimization (GeoTASO)) for the preparation of the Tropospheric Emissions; Monitoring of Pollution (TEMPO) observations for monitoring air quality from space. LISTOS also helped collaborators in the validation of Tropospheric Monitoring Instrument (TROPOMI) science products, with use of airborne- and ground-based measurements of ozone, NO2, and HCHO.
LISTOS Outer Island Ground Site Data
공공데이터포털
LISTOS_Ground_OuterIsland_Data is the Long Island Sound Tropospheric Ozone Study (LISTOS) ground site data collected at the Outer Island ground site during the LISTOS field campaign. This product is a result of a joint effort across multiple agencies, including NASA, NOAA, the EPA Northeast States for Coordinated Air Use Management (NESCAUM), Maine Department of Environmental Protection, New Jersey Department of Environmental Protection, New York State Department of Environmental Conservation, and several research groups at universities. Data collection is complete.The New York City (NYC) metropolitan area (comprised of portions of New Jersey, New York, and Connecticut in and around NYC) is home to over 20 million people, but also millions of people living downwind in neighboring states. This area continues to persistently have challenges meeting past and recently revised federal health-based air quality standards for ground-level ozone, which impacts the health and well-being of residents living in the area. A unique feature of this chronic ozone problem is the pollution transported in a northeast direction out of NYC over Long Island Sound. The relatively cool waters of the Long Island Sound confine the pollutants in a shallow and stable marine boundary layer. Afternoon heating over coastal land creates a sea breeze that carries the air pollution inland from the confined marine layer, resulting in high ozone concentrations in Connecticut and, at times, farther east into Rhode Island and Massachusetts. To investigate the evolving nature of ozone formation and transport in the NYC region and downwind, Northeast States for Coordinated Air Use Management (NESCAUM) launched the Long Island Sound Tropospheric Ozone Study (LISTOS). LISTOS was a multi-agency collaborative study focusing on Long Island Sound and the surrounding coastlines that continually suffer from poor air quality exacerbated by land/water circulation. The primary measurement observations took place between June-September 2018 and include in-situ and remote sensing instrumentation that were integrated aboard three aircraft, a network of ground sites, mobile vehicles, boat measurements, and ozonesondes. The goal of LISTOS was to improve the understanding of ozone chemistry and sea breeze transported pollution over Long Island Sound and its coastlines. LISTOS also provided NASA the opportunity to test air quality remote sensing retrievals with the use of its airborne simulators (GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator (GCAS), and Geostationary Trace gas and Aerosol Sensory Optimization (GeoTASO)) for the preparation of the Tropospheric Emissions; Monitoring of Pollution (TEMPO) observations for monitoring air quality from space. LISTOS also helped collaborators in the validation of Tropospheric Monitoring Instrument (TROPOMI) science products, with use of airborne- and ground-based measurements of ozone, NO2, and HCHO.
PEM West A Ground Data
공공데이터포털
PEM-West-A_Ground_Data is the ground site data collected during the Pacific Exploratory Mission (PEM) West A suborbital campaign. Data utilizing the Nondispersive Infrared Gas Analyzer (NDIR) and chemiluminescence technique are featured in this collection. Data collection for this product is complete.During 1983-2001, NASA conducted a collection of field campaigns as a part of the Global Tropospheric Experiment (GTE) for developing advanced instrumentation to quantify atmospheric trace gases’ sources, sinks, and distribution. Among those was PEM, which intended to improve the scientific understanding of human influence on tropospheric chemistry. Part of the PEM field campaigns (PEM-West) were conducted over the northwestern Pacific region, considered the only major region in the northern hemisphere that is “relatively” free from direct anthropogenic influences. PEM-West was a part of the East Asian/North Pacific Regional Study (APARE). The overarching objectives of PEM-West were 1) to investigate the atmospheric chemistry of ozone (O3) and its precursors over the northwestern Pacific, including the examination of their natural budgets as well as the impact of anthropogenic sources; and 2) to investigate the atmospheric sulfur cycle over the region with emphasis on the relative importance and influence of continental vs marine sulfur sources. The two phases of PEM-West were conducted during differing seasons due to contrasting tropospheric outflow from Asia. The first phase, PEM-West A, was conducted over the western Pacific region off the eastern coast of Asia from September-October 1991, a season characterized by the predominance of flow from mid-Pacific regions. The second phase, PEM-West B, was conducted from February-March 1994, a period characterized by maximum air mass outflow. To accomplish its objectives, the PEM-West campaign deployed the NASA DC-8 aircraft across the northwestern Pacific to gather latitudinal, longitudinal, and vertical profile sampling, as well as extensive sampling in both the marine boundary layer and free troposphere. The aircraft was equipped with a comprehensive suite of in-situ instrument packages for characterization of photochemical precursors, intermediate products, and airmass tracers, including O3, nitric oxide (NO), peroxyacetyl nitrate (PAN), nitrogen oxides (NOy), nonmethane hydrocarbons (NMHCs), hydrogen peroxide (H2O2), acetic acid (CH3OOH), carbon monoxide (CO), and formaldehyde (CH2O). Collectively, these measurements enabled the analyses of the photochemical production/destruction of O3 and the distribution of precursor species. In addition, the DC-8 was equipped with instruments for collecting sulfur measurements, including dimethyl sulfide (DMS), carbonyl sulfide (COS), sulfur dioxide (SO2), and carbon disulfide (CS2). Instruments that collected aerosol composition and microphysical properties were also aboard the DC-8. Both missions deployed a Differential Absorption Lidar (DIAL) system for measurements of O3 vertical profiles above and below the aircraft. One highlight of the project was that flight nine of PEM-West A flew over Typhoon Mireille while it made landfall on the coast of Japan. This allowed for a flight by the DC-8 to study the role of typhoons in the transport of trace gases. Detailed descriptions related to the motivation, implementation, and instrument payloads are available in the PEM-West A overview paper and the PEM-West B overview paper. A collection of the publications based on PEM-West A and B observation are available in the Journal of Geophysical Research special issues: Pacific Exploratory Mission-West Phase A and Pacific Exploratory Mission-West, Phase B (PEM-West B).