데이터셋 상세
미국
M 37 Chandra X-Ray Point Source Catalog
Empirical calibrations of the stellar age-rotation-activity relation (ARAR) rely on observations of the co-eval populations of stars in open clusters. The authors used the Chandra X-ray Observatory to study M 37 (NGC 2099), a 500-Myr-old open cluster that has been extensively surveyed for rotation periods (P<sub>rot</sub>). M 37 was observed almost continuously for five days, for a total of 440.5 ks, to measure stellar X-ray luminosities (L<sub>X</sub>), a proxy for coronal activity, across a wide range of masses. The cluster's membership catalog was revisited to calculate updated membership probabilities from photometric data and each star's distance to the cluster center. The result is a comprehensive sample of 1699 M 37 members: 426 with P<sub>rot</sub>, 278 with X-ray detections, and 76 with both. The authors calculate Rossby numbers, R<sub>o</sub>= P<sub>rot</sub>/tau , where tau is the convective turnover time, and ratios of the X-ray-to-bolometric luminosity, L<sub>X</sub>/L<sub>bol</sub>, to minimize mass dependencies in their characterization of the rotation-coronal activity relation at 500 Myr. They find that fast rotators, for which R<sub>o</sub> < 0.09 +/- 0.01, show saturated levels of activity, with log(L<sub>X</sub>/L<sub>bol</sub>) = -3.06 +/- 0.04. For R<sub>o</sub> >= 0.09 +/- 0.01, activity is unsaturated and follows a power law of the form R<sup>beta</sup><sub>o</sub> , where beta = -2.03 (-0.14, +0.17). This is the largest sample available for analyzing the dependence of coronal emission on rotation for a single-aged population, covering stellar masses in the range 0.4 - 1.3 solar masses, P<sub>rot</sub> in the range 0.4 - 12.8 days, and L<sub>X</sub> in the range 10<sup>28.4</sup> - 10<sup>30.5</sup> erg s<sup>-1</sup>. These results make M 37 a new benchmark open cluster for calibrating the ARAR at ages of ~ 500 Myr. The central field of M 37 was observed five separate times between 2011 November 14 20:58 and 2011 November 1915:31 UTC for a total of 440.5 ks with the Advanced CCD Imaging Spectrometer (ACIS). The four ACIS-I chips and the ACIS-S3 chip were used in Very Faint telemetry mode to improve the screening of background events and thus increase the sensitivity of ACIS to faint sources. The exposure-weighted average aimpoint of the 16.9 x 16.9 arcmin<sup>2</sup> ACIS-I field of view is RA = 05<sup>h</sup> 52<sup>m</sup> 17.86<sup>s</sup>,Dec = +32<sup>o</sup> 33' 48.23" (J2000). The pitch angle for four observations was 103 degrees; due to scheduling constraints, it was 253 degrees for the fifth. Table 1 in the reference paper provides the basic information for the 5 Chandra observations and Figure 1 in that paper shows their footprints superimposed on a 40' x 40' i' image centered on M 37 obtained by Hartman et al. (2008, ApJ, 675, 1233, hereafter HA08) with the Megacam on the MMT telescope. This HEASARC table contains all of the data from Table 3 of the reference paper, the M 37 Chandra catalog of 774 X-ray sources, and the data from Table 5, the catalog of optical objects, for those objects which have been identified as optical counterparts to the X-ray sources. It does not contain entries for those optical objects in Table 5 which lack X-ray counterparts. This online catalog was created by the HEASARC in December 2015 based on machine-readable versions of tables 3 and 5 from the paper which were obtained from the ApJ website. This is a service provided by NASA HEASARC .
데이터 정보
연관 데이터
M 83 Chandra X-Ray Point Source Catalog
공공데이터포털
The authors of this table have obtained a series of deep X-ray images of the nearby (4.61 Mpc) galaxy M 83 using Chandra, with a total exposure of 729 ks. Combining the new data with earlier archival observations totaling 61 ks, they find 378 point sources within the D25 contour of the galaxy. The authors find 80 more sources, mostly background active galactic nuclei (AGNs), outside of the D25 contour. Of the X-ray sources, 47 have been detected in a new radio survey of M 83 obtained using the Australia Telescope Compact Array (ATCA). Of the X-ray sources, at least 87 seem likely to be supernova remnants (SNRs), based on a combination of their properties in X-rays and at other wavelengths. The authors attempt to classify the point source population of M 83 through a combination of spectral and temporal analysis. As part of this effort, in the reference paper they carry out an initial spectral analysis of the 29 brightest X-ray sources. The soft X-ray sources in the disk, many of which are SNRs, are associated with the spiral arms, while the harder X-ray sources, mostly X-ray binaries (XRBs), do not appear to be. After eliminating AGNs, foreground stars, and identified SNRs from the sample, the authors construct the cumulative luminosity function (CLF) of XRBs brighter than 8 x 1035 erg s-1. Despite M 83's relatively high star formation rate, the CLF indicates that most of the XRBs in the disk are low mass X-ray binaries (XRBs). The X-ray observations of M 83 in this survey were all carried out with the ACIS-S in order to maximize the sensitivity to soft X-ray sources, such as SNRs, and to diffuse emission. The nucleus of M 83 was centered in the field of the back-illuminated S3 chip to provide reasonably uniform coverage of M 83. In addition to the S3 chip, data were also obtained from chips S1, S2, S4, I2, and I3. All of the observations were made in the "very faint" mode to optimize background subtraction. Observations were spaced over a period of one year from 2010 December to 2011 December, as indicated in Table 1 of the reference paper. The only difference among observations was the roll orientation of the spacecraft and the differing exposure times. All of the observations were nominal, and yielded a total of 729 ks of useful data. In order to maximize their sensitivity and more importantly to improve their ability to identify time variable sources, the authors included in their analysis earlier Chandra observations of M 83 in 2000 and 2001 totaling 61 ks which were obtained by G. Rieke (Prop ID. 1600489) and by A. Prestwich (Prop ID. 267005758). These data were obtained in a very similar manner to that of the present survey, and increased the total exposure to 790 ks. The authors used ACIS EXTRACT (AE) to derive net count rates from the sources in various energy bands: 0.35 - 8.0 keV (total or T), 0.35 - 1.1 keV (soft or S), 1.1 - 2.6 keV (medium or M), 2.6 - 8.0 keV (hard or H), 0.5 - 2.0 keV ("normal" soft band) and 2.0 - 8.0 keV ("normal" hard band). Their choice of these bands was based on a variety of overlapping goals. The broad 0.35 - 8.0 keV band samples the full energy range accessible to Chandra observations. The three bands S, M and H provide energy ranges intended to classify sources on the basis of their hardness ratios. The boundary at 1.1 keV, in particular, is just above the region containing strong features due to Ne and Fe seen in the spectra of most SNRs. The 0.5 - 2.0 keV and 2.0 - 8.0 keV bands are needed because number counts of active galactic nuclei (AGNs) and of X-ray binary populations are normally carried out in these bands and because the 0.5 - 2.0 keV band, encompassing the peak of the response curve, provides better statistics for some purposes than S+M. The AE count rates were used to establish which of the sources in the candidate list were statistically valid. The authors retained any source that had a probability-of-no-source < 5 x
M 81 Chandra X-Ray Point Source Catalog
공공데이터포털
This table contains the source table from an analysis of 15 Chandra ACIS observations of the nearby spiral galaxy M81 taken over the course of six weeks in 2005 May-July. Each observation reaches a sensitivity of ~1037 erg s-1. With these observations and one previous deeper Chandra observation (the properties of which are described in Table 1 and Section 2 of the reference paper), the authors have compiled a master source list of 265 point sources, extracted and fitted their spectra, and differentiated basic populations of sources through their colors. They also carried out variability analyses of individual point sources and of X-ray luminosity functions (XLFs) in multiple regions of M 81 on timescales of days, months, and years. They find that, despite measuring significant variability in a considerable fraction of sources, snapshot observations provide a consistent determination of the XLF of M81. They also fit the XLFs for multiple regions of M81 and, using common parametrization, compare these luminosity functions to those of two other spiral galaxies, M31 and the Milky Way. This table contains the 265 point sources at or above the 99.9% probability level of being real according to AE's PROB_NO_SOURCE statistic (the "master" source list), and 11 additional "borderline" sources which have 99.0-99.9% probability of being real according to AE's PROB_NO_SOURCE statistic, for a total of 276 sources whose properties were described in Tables 3 and 4 of the reference paper. The 265 "master" sources have source numbers from 1 to 265 while the 11 "borderline" sources have source numbers beginning with 'B', e.g., they have source numbers 'B1' to 'B11'. Note that only coordinates are listed for 3 sources in the master source list (source numbers 234, 241 and 262) and 2 sources in the borderline source list (B8 and B9) because they were only in the field of view (on chip) of one observation (ObsID 735). Six additional sources near the center of M81 which were found using maximum likelihood image reconstruction are not included in either the master or borderline source lists contained herein but their positions are listed in table 2 of the reference paper. This table was created by the HEASARC in August 2011 based on electronic versions of Tables 3 and 4 from the reference paper which were obtained from the ApJ web site. Some of the values for the name parameter in the HEASARC's implementation of this table were corrected in April 2018. This is a service provided by NASA HEASARC .
M 51 Deep Chandra ACIS X-Ray Point Source Catalog
공공데이터포털
The authors obtained a deep X-ray image of the nearby galaxy M 51 using the Chandra X-Ray Observatory. Here the catalog of X-ray sources detected in these observations is presented, while an overview of the properties of the point-source population is provided in the reference paper. The authors find 298 sources within the D25 radii (the apparent major isophotal galactic radii measured at or reduced to the surface brightness level muB = 25.0 B-mag per square arcsecond) of NGC 5194 and NGC 5195, of which 20% are variable, a dozen are classical transients, and another half dozen are transient-like sources. The typical number of active ultraluminous X-ray sources in any given observation is ~5, and only two of those sources persist in an ultraluminous state over the 12 years of observations. Given reasonable assumptions about the supernova remnant population, the luminosity function is well described by a power law with an index between 1.55 and 1.7, only slightly shallower than that found for populations dominated by high-mass X-ray binaries (HMXBs), which suggests that the binary population in NGC 5194 is also dominated by HMXBs. The luminosity function of NGC 5195 is more consistent with a low-mass X-ray binary dominated population. This deep study of M51 is composed of 107 ks of archival Chandra observations, to which the authors added another 745 ks of observations. The Chandra ObsIDs and parameters of all of the observations used in this study (which span from June 2000 to October 2012) are given in Table 2 of the reference paper. All of the observations were made with the ACIS-S array. The authors used the ACIS Extract software package (AE) to perform the photometry. For each source, AE extracted a source region whose size and shape were based on the local PSF, and a background region whose size and shape were based on the size of the local PSF and the location of nearby sources. Source properties were then calculated in a standard manner. Of particular importance in this analysis is the prob_no_source parameter, which is the probability that one could measure the observed count rate in the absence of a source. The authors took a source to be significant only if this parameter was < 5 x 10-6. At this probability threshold, one would expect a single spurious source per field, or roughly 1.5 spurious sources within the D25 regions. As they used the same value in their analysis of M83 (Long et al. 2014, ApJS, 212, 21, the source catalog from which is available in the HEASARC database as the M83CXO table), the two catalogs are directly comparable. This table was created by the HEASARC in January 2017 based on CDS Catalog J/ApJ/827/46 files table4.dat, table5.dat and table6.dat. This is a service provided by NASA HEASARC .
M 81 Chandra X-Ray Discrete Source Catalog
공공데이터포털
A Chandra X-Ray Observatory ACIS-S imaging observation is used to study the population of X-ray sources in the nearby (3.6 Mpc) Sab galaxy M 81 (NGC 3031). A total of 177 sources are detected, with 124 located within the D_25 isophote to a limiting X-ray luminosity of ~ 3 x 1036 erg/s. Source positions, count rates, luminosities in the 0.3 - 8.0 keV band, limiting optical magnitudes, and potential counterpart identifications are tabulated. Spectral and timing analysis of the 36 brightest sources are reported, including the low-luminosity active galactic nucleus, SN 1993J, and the Einstein-discovered ultraluminous X-ray source X6. The primary X-ray data set is a 49926 s observation of M81 obtained on 2000 May 7 with the Chandra Advanced CCD Imaging Spectrometer (ACIS) spectroscopy array operating in imaging mode. The X-ray data were reprocessed by the Chandra X-ray Center (CXC) on 2001 January 4. These reprocessed data were used in this work. There are no significant differences between the reprocessed data and the originally distributed data analyzed by Tennant et al. (2001ApJ...549L..43T). The observation was taken in faint timed exposure mode at 3.241 s/frame at a focal plane temperature of -120 C. Standard CXC processing has applied aspect corrections and compensated for spacecraft dither. The primary target, SN 1993J, was located near the nominal aimpoint on the back-illuminated (BI) device S3. The nucleus of M81 lies 2.79' from SN 1993J toward the center of S3 in this observation. Accurate positions of these two objects and two G0 stars located on device S2 were used to identify any offset and to determine absolute locations of the remaining Chandra sources as well as objects in other X-ray images and those obtained at other wavelengths. No offset correction was applied to the Chandra X-ray positions. This table was created by the HEASARC in March 2007 based on the CDS table J/ApJS/144/213, files table2.dat and table3.dat. This is a service provided by NASA HEASARC .
M 101 Chandra X-Ray Point Source Catalog
공공데이터포털
Galactic Center Chandra X-Ray Point Source Catalog
공공데이터포털
This table contains a catalog of 9017 X-ray sources identified in Chandra observations of a 2 degrees by 0.8 degrees field around the Galactic center. This enlarges the number of known X-ray sources in the region by a factor of 2.5. The catalog incorporates all of the ACIS-I observations as of 2007 August, which total 2.25 Ms of exposure. At the distance to the Galactic center (8 kpc), we are sensitive to sources with luminosities of 4 x 1032 erg s-1 (0.5-8.0 keV; 90% confidence) over an area of 1 degree2, and up to an order of magnitude more sensitive in the deepest exposure (1.0 Ms) around Sgr A*. The positions of 60% of the sources are accurate to <1 arcsecond (95% confidence), and 20% have positions accurate to <0.5 arcsec. The authors search for variable sources, and find that 3% exhibit flux variations within an observation, and 10% exhibit variations from observation-to-observation. They also find one source, CXOUGC J174622.7-285218, with a periodic 1745 s signal (1.4% chance probability), which is probably a magnetically accreting cataclysmic variable. The authors compare the spatial distribution of X-ray sources to a model for the stellar distribution, and find 2.8 sigma evidence for excesses in the numbers of X-ray sources in the region of recent star formation encompassed by the Arches, Quintuplet, and Galactic center star clusters. These excess sources are also seen in the luminosity distribution of the X-ray sources, which is flatter near the Arches and Quintuplet than elsewhere in the field. These excess point sources, along with a similar longitudinal asymmetry in the distribution of diffuse iron emission that has been reported by other authors, probably have their origin in the young stars that are prominent at a galactic lonitude ~ 0.1 degrees. This tables was designed to be inclusive, so sources of questionable quality are included, according to the authors. For instance, 134 sources have net numbers of counts in the 0.5-8.0 keV band that are consistent with 0 at the 90% confidence level. These sources are only detected in a single band and are presumably either very hard or very soft, detected in single observations because they were transients, or detected in stacked observations with wvdecomp at marginal significance. The authors have chosen to include them because they passed the test based on Poisson statistics from Weisskopf et al. (2007, ApJ, 657, 1026). The observations which were used to generate the source list herein tabulated are listed in Table 1 of the reference paper. This HEASARC table GALCENCXO supercedes and replaces the previous HEASARC tables CHANGALCEN and CHANC150PC, which were based on Muno et al. (2003, ApJ, 589, 225) and Muno et al. (2006, ApJS, 165, 173), respectively. This table was created by the HEASARC in March 2009 based on the machine-readable versions of Table 2, 3 and 4 from the paper which were obtained from the electronic ApJ website. The information on short-term variability given in Table 5 of the reference paper was not included in this HEASARC table, notice. This is a service provided by NASA HEASARC .
M 31 Disk Chandra PHAT Survey: X-Ray Source Catalog
공공데이터포털
The X-ray source populations within galaxies are typically difficult to identify and classify with X-ray data alone. The authors break through this barrier by combining deep new Chandra ACIS-I observations with extensive Hubble Space Telescope (HST) imaging from the Panchromatic Hubble Andromeda Treasury (PHAT) of the M 31 disk. They detect 373 X-ray sources down to 0.35-8.0keV flux of 10-15erg/cm-2/s over 0.4deg2, 170 of which are reported for the first time. The authors identify optical counterpart candidates for 188 of the 373 sources, after using the HST data to correct the absolute astrometry of our Chandra imaging to 0.1". While 58 of these 188 are associated with point sources potentially in M 31, over half (107) of the counterpart candidates are extended background galaxies, 5 are star clusters, 12 are foreground stars, and 6 are supernova remnants. Sources with no clear counterpart candidate are most likely to be undetected background galaxies and low-mass X-ray binaries in M 31. The hardest sources in the 1-8keV band tend to be matched to background galaxies. The 58 point sources that are not consistent with foreground stars are bright enough that they could be high-mass stars in M 31; however, all but 8 have optical colors inconsistent with single stars, suggesting that many could be background galaxies or binary counterparts. For point-like counterparts, the authors examine the star formation history of the surrounding stellar populations to look for a young component that could be associated with a high-mass X-ray binary. The associated star formation histories for sources in the catalog are available in the linked table M31PHATSFH. In 2015 October, the authors observed the Panchromatic Hubble Andromeda Treasury (PHAT) footprint with Chandra with 7 pointings. The footprints are overlaid on a GALEX NUV image of M 31, along with the corresponding HST coverage, in Figure 1 of the reference paper. At each pointing they observed for about 50ks in VF mode (Chandra ObsID 17008 to 17014 spanning 2015 Oct 06 to 2015 Oct 26). This table was created by the HEASARC in April 2020 based upon the CDS Catalog J/ApJS/239/13 file table4.dat and table6.dat. This is a service provided by NASA HEASARC .
M 31 Central Field Chandra HRI X-Ray Point Source Catalog
공공데이터포털
The central field of the Andromeda galaxy (M 31) was monitored from 2006 to 2012 using the Chandra HRC-I detector (about 0.1 - 10 keV energy range) with the main aim of detecting X-rays from optical novae. The authors present a systematic analysis of all X-ray sources found in the 41 nova monitoring observations, along with 23 M 31 central field HRC-I observations available from the Chandra data archive starting in December 1999. Based on these observations, they studied the X-ray long-term variability of the source population and especially of the X-ray binaries in M31. The authors created a catalog of sources detected in the 64 available observations that adds up to a total exposure time of about 1 Ms. To study the variability, they developed a processing pipeline to derive long-term Chandra HRC-I light curves for each source over the 13 years of observations, and also searched for extended X-ray sources in the merged images. This table contains the point-source catalog of 318 X-ray sources with detailed long-term variability information, 28 of which are published for the first time. The spatial and temporal resolution of the catalog allows the authors to classify 115 X-ray binary candidates showing high X-ray variability or even outbursts, as well as 14 globular cluster X-ray binary candidates showing no significant variability. The analysis may suggest that outburst sources are less frequent in globular clusters than in the field of M 31. Seven supernova remnants (not included in the point-source catalog) were detected, one of which is a new candidate, and also the first X-rays from a known radio supernova remnant were resolved. In addition to 33 known optical nova/X-ray source correlations, the authors discovered one previously unknown super-soft X-ray outburst and several new nova candidates. A large sample of detailed long-term X-ray light curves of sources in the M31 central field has been obtained in this study (see Appendix B.1 of the reference paper), which helps in understanding the X-ray population of our neighboring spiral galaxy M 31. Based on all the available Chandra HRC-I observations (see Table A.1 in the reference paper for the complete list), a source catalog has been created (available in this HEASARC table) and the energy flux of each source in every individual observation derived (these are not available in this HEASARC table, but are obtainable at the CDS: for more details, see the files https://cdsarc.cds.unistra.fr/ftp/cats/J/A%2BA/555/A65/ReadMe and https://cdsarc.cds.unistra.fr/ftp/cats/J_A%2BA/555/A65/table2.dat.gz). One thing to be aware of is that, in the latter file, upper limits are denoted by a '>' symbol rather than the more usual '<' symbol!). These fluxes were calculated assuming a generic power law spectrum and Galactic foreground absorption for each source. This table was created by the HEASARC in August 2013 based on the CDS catalog J/A+A/555/A65 files table1.dat and xcorr.dat. This is a service provided by NASA HEASARC .
Chandra ACIS Survey of Nearby Galaxies X-Ray Point Source Catalog
공공데이터포털
The Chandra data archive is a treasure trove for various studies, and in this study the author exploits this valuable resource to study the X-ray point source populations in nearby galaxies. By 2007 December 14, 383 galaxies within 40 Mpc with isophotal major axes above 1 arcminute had been observed by 626 public ACIS observations, most of which were for the first time analyzed by this survey to study the X-ray point sources. Uniform data analysis procedures were applied to the 626 ACIS observations and led to the detection of 28,099 point sources, which belong to 17,559 independent sources. These include 8700 sources observed twice or more and 1000 sources observed 10 times or more, providing a wealth of data to study the long-term variability of these X-ray sources. Cross-correlation of these sources with galaxy isophotes led to 8,519 sources within the D25 isophotes of 351 galaxies, 3,305 sources between the D25 and 2 * D25 isophotes of 309 galaxies, and an additional 5,735 sources outside the 2 * D25 isophotes of galaxies. This survey has produced a uniform catalog, by far the largest, of 11,824 X-ray point sources within 2 * D25 isophotes of 380 galaxies. Contamination analysis using the log N-log S relation shows that 74% of the sources within the 2 * D25 isophotes above 1039 erg s-1, 71% of the sources above 1038 erg s-1, 63% of the sources above 1037 erg s-1, and 56% of all sources are truly associated with the galaxies. Meticulous efforts have identified 234 X-ray sources with galactic nuclei of nearby galaxies. This archival survey leads to 300 ultraluminous X-ray sources (ULXs) with LX in the 0.3-8 keV band >= 2 x 1039 erg s-1 within the D25 isophotes, 179 ULXs between the D25 and the 2 * D25 isophotes, and a total of 479 ULXs within 188 host galaxies, with about 324 ULXs truly associated with the host galaxies based on the contamination analysis. About 4% of the sources exhibited at least one supersoft phase, and 70 sources are classified as ultraluminous supersoft sources with LX (0.3-8 keV) >= 2 x 1038 erg s-1. With a uniform data set and good statistics, this survey enables future works on various topics, such as X-ray luminosity functions for the ordinary X-ray binary populations in different types of galaxies, and X-ray properties of galactic nuclei. This table contains the list of 17,559 'independent' X-ray point sources that was contained in table 4 of the reference paper. As the author notes in Section 5 of this paper, there are 341 sources projected within 2 galaxies with overlapping domains which are listed for both galaxies. The 5,735 sources lieing outside the 2* D25 isophotes of the galaxies are also included in this table. For these sources, the X-ray luminosities are computed as if they were in a galaxy of that group, which may or may not be the case; thus, they may not be their 'true' luminosities, but are listed for the purposes of comparison. This table was created by the HEASARC in March 2011 based on the electronic version of Table 4 of the reference paper which was obtained from the Astrophysical Journal web site. Some of the values for the name parameter in the HEASARC's implementation of this table were corrected in April 2018. This is a service provided by NASA HEASARC .
M 33 Chandra X-Ray Point Source Catalog
공공데이터포털