데이터셋 상세
미국
NASA Shuttle Radar Topography Mission Swath Image Data V003
The Land Processes Distributed Active Archive Center (LP DAAC) is responsible for the archive and distribution of NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) (https://earthdata.nasa.gov/about/competitive-programs/measures) SRTM, which includes the global 1 arc second (~30 meter) swath (raw) image data product (See User Guide Section 2.2.1).The SRTM swath image data set consists of radar image files containing brightness values, as well as quality assurance (incidence angle) files for each of four overlapping sub-swaths that passes through a 1 degree by 1 degree tile. Data from each sub-swath is included as a separate file. Some files may contain only partial data; however, every image pixel acquired by SRTM is included in this data set.The NASA SRTM data sets result from a collaborative effort by the National Aeronautics and Space Administration (NASA) and the National Geospatial-Intelligence Agency (NGA - previously known as the National Imagery and Mapping Agency, or NIMA), as well as the participation of the German and Italian space agencies. This collaboration aims to generate a near-global digital elevation model (DEM) of Earth using radar interferometry. SRTM was the primary (and virtually only) payload on the STS-99 mission of the Space Shuttle Endeavour, which launched February 11, 2000, and flew for 11 days.The SRTM swaths extended from ~30 degrees off-nadir to ~58 degrees off-nadir from an altitude of 233 kilometers (km), creating swaths ~225 km wide, and consisted of all land between 60 degrees N and 56 degrees S latitude to account for 80 percent of Earth’s total landmass. Known Issues* Known issues in the NASA SRTM are described in the following publication:Rodriguez, E., C. S. Morris, and J. E. Belz (2006), A global assessment of the SRTM performance, Photogramm. Eng. Remote Sens., 72, 249–260. https://doi.org/10.14358/PERS.72.3.249Improvements/Changes from Previous Versions * Voids in the Version 3.0 products have been filled with ASTER Global Digital Elevation Model (GDEM) Version 2.0, the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010), and the National Elevation Dataset (NED).
연관 데이터
NASA Shuttle Radar Topography Mission Combined Image Data Set V003
공공데이터포털
The Land Processes Distributed Active Archive Center (LP DAAC) is responsible for the archive and distribution of NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) (https://earthdata.nasa.gov/about/competitive-programs/measures) SRTM, which includes the global 1 arc second (~30 meter) combined (merged) image data product (See User Guide Section 2.2.2). The combined image data set contains mosaicked one degree by one degree images/tiles of uncalibrated radar brightness values at 1 arc second. To create a smooth mosaic image, each pixel in an output is an average of all the image pixels for a location. Pixels with a value of zero (voids) were not counted. Because SRTM imaged a given location with two like-polarization channels (VV = vertical transmit and vertical receive, and HH = horizontal transmit and horizontal receive) and at a variety of look and azimuth angles, the quantitative scattering information was lost in the pursuit of a smoother image product unlike the SRTM swath image product SRTMIMGR (https://doi.org/10.5067/MEaSUREs/SRTM/SRTMIMGR.003), which preserved the quantitative scattering information.The NASA SRTM data sets result from a collaborative effort by the National Aeronautics and Space Administration (NASA) and the National Geospatial-Intelligence Agency (NGA - previously known as the National Imagery and Mapping Agency, or NIMA), as well as the participation of the German and Italian space agencies. This collaboration aims to generate a near-global digital elevation model (DEM) of Earth using radar interferometry. SRTM was the primary (and virtually only) payload on the STS-99 mission of the Space Shuttle Endeavour, which launched February 11, 2000 and flew for 11 days.The SRTM swaths extended from ~30 degrees off-nadir to ~58 degrees off-nadir from an altitude of 233 kilometers (km), creating swaths ~225 km wide, and consisted of all land between 60° N and 56° S latitude to account for 80% of Earth’s total landmass. Known Issues* Known issues in the NASA SRTM are described in the following publication:Rodriguez, E., C. S. Morris, and J. E. Belz (2006), A global assessment of the SRTM performance, Photogramm. Eng. Remote Sens., 72, 249–260. https://doi.org/10.14358/PERS.72.3.249Improvements/Changes from Previous Versions * Voids in the Version 3.0 products have been filled with ASTER Global Digital Elevation Model (GDEM) Version 2.0, the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010), and the National Elevation Dataset (NED).
NASA Shuttle Radar Topography Mission Global 30 arc second V002
공공데이터포털
The Land Processes Distributed Active Archive Center (LP DAAC) is responsible for the archive and distribution of NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) (https://earthdata.nasa.gov/about/competitive-programs/measures) SRTM, which includes the global 30 arc second (~1,000 meter) product. The NASA SRTM product with sample spacing of 3 arc second (~90 meter) generated by a 3 X 3 averaging of the 1 arc second data are then 10 X 10 averaged to produce thirty 30 arc second (~1,000 meter) data to correspond with Global 30 Arc Second Elevation (GTOPO30). (See the User Guide Section 2.1.4)The NASA SRTM data sets result from a collaborative effort by the National Aeronautics and Space Administration (NASA) and the National Geospatial-Intelligence Agency (NGA - previously known as the National Imagery and Mapping Agency, or NIMA), as well as the participation of the German and Italian space agencies. This collaboration aims to generate a near-global digital elevation model (DEM) of Earth using radar interferometry. SRTM was the primary (and virtually only) payload on the STS-99 mission of the Space Shuttle Endeavour, which launched February 11, 2000, and flew for 11 days.The SRTM swaths extended from ~30 degrees off-nadir to ~58 degrees off-nadir from an altitude of 233 kilometers (km), creating swaths ~225 km wide, and consisted of all land between 60 degrees N and 56 degrees S latitude to account for 80 percent of Earth’s total landmass.Known Issues* SRTMGL30 is Version 2.1 and has not been updated for the NASA SRTM V3.0 release as described in the User Guide.* Known issues in the NASA SRTM are described in the following publication:Rodriguez, E., C. S. Morris, and J. E. Belz (2006), A global assessment of the SRTM performance, Photogramm. Eng. Remote Sens., 72, 249–260. https://doi.org/10.14358/PERS.72.3.249Improvements/Changes from Previous Versions* Editing, spike and pit removal, waterbody leveling, and coastline definition.
NASA Shuttle Radar Topography Mission Global 3 arc second NetCDF V003
공공데이터포털
The Land Processes Distributed Active Archive Center (LP DAAC) is responsible for the archive and distribution of NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) (https://earthdata.nasa.gov/about/competitive-programs/measures) SRTM, which includes the global 3 arc second (~90 meter) product. The 3 arc second data was derived from the 1 arc second using sampling and averaging methods. SRTMGL3_NC offers the data product in NetCDF.NASA Shuttle Radar Topography Mission (SRTM) datasets result from a collaborative effort by the National Aeronautics and Space Administration (NASA) and the National Geospatial-Intelligence Agency (NGA - previously known as the National Imagery and Mapping Agency, or NIMA), as well as the participation of the German and Italian space agencies. The purpose of SRTM was to generate a near-global digital elevation model (DEM) of the Earth using radar interferometry. SRTM was a primary component of the payload on the Space Shuttle Endeavour during its STS-99 mission. Endeavour launched February 11, 2000 and flew for 11 days. SRTM collected data in swaths, which extend from ~30 degrees off-nadir to ~58 degrees off-nadir from an altitude of 233 kilometers (km). These swaths are ~225 km wide, and consisted of all land between 60° North (N) and 56° South (S) latitude. This accounts for about 80% of Earth’s total landmass.Improvements/Changes from Previous Versions * Voids in the Version 3.0 products have been filled with ASTER Global Digital Elevation Model (GDEM) Version 2.0, the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010), and the National Elevation Dataset (NED).
NASA Shuttle Radar Topography Mission Global 3 arc second V003
공공데이터포털
The Land Processes Distributed Active Archive Center (LP DAAC) is responsible for the archive and distribution of NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) (https://earthdata.nasa.gov/about/competitive-programs/measures) SRTM, which includes the global 3 arc second (~90 meter) product. The 3 arc second data was derived from the 1 arc second using averaging methods. (See Figure 3 in the User Guide) The NASA SRTM data sets result from a collaborative effort by the National Aeronautics and Space Administration (NASA) and the National Geospatial-Intelligence Agency (NGA - previously known as the National Imagery and Mapping Agency, or NIMA), as well as the participation of the German and Italian space agencies. This collaboration aims to generate a near-global digital elevation model (DEM) of Earth using radar interferometry. SRTM was the primary (and virtually only) payload on the STS-99 mission of the Space Shuttle Endeavour, which launched February 11, 2000 and flew for 11 days.The SRTM swaths extended from ~30 degrees off-nadir to ~58 degrees off-nadir from an altitude of 233 kilometers (km), creating swaths ~225 km wide, and consisted of all land between 60 degrees N and 56 degrees S latitude to account for 80 percent of Earth’s total landmass. The SRTMGL3 data were generated from SRTM1GL (https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003) data that fall within that tile. These elevation files use the extension “.HGT”, meaning height (such as N37W105.SRTMGL3.HGT). The primary goal of creating the Version 3 data was to eliminate gaps, or voids, that were present in earlier versions of SRTM data. In areas with limited data, existing topographical data were used to supplement the SRTM data to fill the voids. The source of each elevation pixel is identified in the corresponding SRTMGL3N (https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL3N.003) product (such as N37W105.SRTMGL3N.NUM).The global 3 arc second SRTM product is also available in NetCDF4 format as the SRTMGL3_NC dataset with the source of each elevation pixel in the corresponding SRTMGL3_NUMNC product.Known Issues* Known issues in the NASA SRTM are described in the following publication:Rodriguez, E., C. S. Morris, and J. E. Belz (2006), A global assessment of the SRTM performance, Photogramm. Eng. Remote Sens., 72, 249–260. https://doi.org/10.14358/PERS.72.3.249Improvements/Changes from Previous Versions* Voids in the Version 3.0 products were filled with ASTER Global Digital Elevation Model (GDEM) Version 2.0, the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010), and the National Elevation Dataset (NED).
NASA Shuttle Radar Topography Mission Global 1 arc second Number NetCDF V003
공공데이터포털
The Land Processes Distributed Active Archive Center (LP DAAC) is responsible for the archive and distribution of the NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) (https://earthdata.nasa.gov/about/competitive-programs/measures) version SRTM, which includes the global 1 arc second (~30 meter) product. SRTMGL1_NUMNC is used along with the SRTMGL1_NC data product and offers the number count in NetCDF. NASA Shuttle Radar Topography Mission (SRTM) datasets result from a collaborative effort by the National Aeronautics and Space Administration (NASA) and the National Geospatial-Intelligence Agency (NGA - previously known as the National Imagery and Mapping Agency, or NIMA), as well as the participation of the German and Italian space agencies. The purpose of SRTM was to generate a near-global digital elevation model (DEM) of the Earth using radar interferometry. SRTM was a primary component of the payload on the Space Shuttle Endeavour during its STS-99 mission. Endeavour launched February 11, 2000 and flew for 11 days. SRTM collected data in swaths, which extend from ~30 degrees off-nadir to ~58 degrees off-nadir from an altitude of 233 kilometers (km). These swaths are ~225 km wide, and consisted of all land between 60° North (N) and 56° South (S) latitude. This accounts for about 80% of Earth’s total landmass.Improvements/Changes from Previous Versions * Voids in the Version 3.0 products have been filled with ASTER Global Digital Elevation Model (GDEM) Version 2.0, the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010), and the National Elevation Dataset (NED).
NASA Shuttle Radar Topography Mission Global 1 arc second NetCDF V003
공공데이터포털
The Land Processes Distributed Active Archive Center (LP DAAC) is responsible for the archive and distribution of the NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) (https://earthdata.nasa.gov/about/competitive-programs/measures) version SRTM, which includes the global 1 arc second (~30 meter) product. SRTMGL1_NC offers the data product in NetCDF. NASA Shuttle Radar Topography Mission (SRTM) datasets result from a collaborative effort by the National Aeronautics and Space Administration (NASA) and the National Geospatial-Intelligence Agency (NGA - previously known as the National Imagery and Mapping Agency, or NIMA), as well as the participation of the German and Italian space agencies. The purpose of SRTM was to generate a near-global digital elevation model (DEM) of the Earth using radar interferometry. SRTM was a primary component of the payload on the Space Shuttle Endeavour during its STS-99 mission. Endeavour launched February 11, 2000 and flew for 11 days. SRTM collected data in swaths, which extend from ~30 degrees off-nadir to ~58 degrees off-nadir from an altitude of 233 kilometers (km). These swaths are ~225 km wide, and consisted of all land between 60° North (N) and 56° South (S) latitude. This accounts for about 80% of Earth’s total landmass.Improvements/Changes from Previous Versions * Voids in the Version 3.0 products have been filled with ASTER Global Digital Elevation Model (GDEM) Version 2.0, the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010), and the National Elevation Dataset (NED).
NASA Shuttle Radar Topography Mission Global 1 arc second number V003
공공데이터포털
The Land Processes Distributed Active Archive Center (LP DAAC) is responsible for the archive and distribution of the NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) (https://earthdata.nasa.gov/about/competitive-programs/measures) version SRTM, which includes the global 1 arc second (~30 meter) product.NASA Shuttle Radar Topography Mission (SRTM) datasets result from a collaborative effort by the National Aeronautics and Space Administration (NASA) and the National Geospatial-Intelligence Agency (NGA - previously known as the National Imagery and Mapping Agency, or NIMA), as well as the participation of the German and Italian space agencies. The purpose of SRTM was to generate a near-global digital elevation model (DEM) of the Earth using radar interferometry. SRTM was a primary component of the payload on the Space Shuttle Endeavour during its STS-99 mission. Endeavour launched February 11, 2000, and flew for 11 days.SRTM collected data in swaths, which extend from ~30 degrees off-nadir to ~58 degrees off-nadir from an altitude of 233 kilometers (km). These swaths are ~225 km wide, and consisted of all land between 60 degrees N and 56 degrees S latitude. This accounts for about 80 percent of Earth’s total landmass. Each SRTMGL1 data tile contains a mosaic and blending of elevations generated by averaging all "data takes" that fall within that tile. These elevation files use the extension “.HGT”, meaning height (such as N37W105.SRTMGL1.HGT). The primary goal of creating the Version 3 data was to eliminate voids that were present in earlier versions of SRTM data. In areas with limited data, existing topographical data were used to supplement the SRTM data to fill the voids. The source of each elevation pixel is identified in the corresponding SRTMGL1N (https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1N.003) product (such as N37W105.SRTMGL1N.NUM).The global 1 arc second SRTM product is also available in NetCDF4 format as the SRTMGL1_NC dataset with the source of each elevation pixel in the corresponding SRTMGL1_NUMNC product.Known Issues* Known issues in the NASA SRTM are described in the following publication:Rodriguez, E., C. S. Morris, and J. E. Belz (2006), A global assessment of the SRTM performance, Photogramm. Eng. Remote Sens., 72, 249–260. https://doi.org/10.14358/PERS.72.3.249Improvements/Changes from Previous Versions * Voids in the Version 3.0 products have been filled with ASTER Global Digital Elevation Model (GDEM) Version 2.0, the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010), and the National Elevation Dataset (NED).
NASA Shuttle Radar Topography Mission Global 3 arc second number V003
공공데이터포털
The Land Processes Distributed Active Archive Center (LP DAAC) is responsible for the archive and distribution of NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) (https://earthdata.nasa.gov/about/competitive-programs/measures) SRTM, which includes the global 3 arc second (~90 meter) number product. The NASA SRTM data sets result from a collaborative effort by the National Aeronautics and Space Administration (NASA) and the National Geospatial-Intelligence Agency (NGA - previously known as the National Imagery and Mapping Agency, or NIMA), as well as the participation of the German and Italian space agencies. This collaboration aims to generate a near-global digital elevation model (DEM) of Earth using radar interferometry. SRTM was the primary (and virtually only) payload on the STS-99 mission of the Space Shuttle Endeavour, which launched February 11, 2000, and flew for 11 days.The SRTM swaths extended from ~30 degrees off-nadir to ~58 degrees off-nadir from an altitude of 233 kilometers (km), creating swaths ~225 km wide, and consisted of all land between 60 degrees N and 56 degrees S latitude to account for 80 percent of Earth’s total landmass.Ancillary one-byte (0 to 255) “NUM” (number) files were produced for NASA SRTM Version 3. These files have names corresponding to the elevation files, except with the extension “.NUM” (such as N37W105.NUM). The elevation files use the extension “.HGT”, meaning height (such as N37W105.HGT). The separate NUM file indicates the source of each DEM pixel; the number of ASTER scenes used (up to 100), if ASTER; and the number of SRTM data takes (up to 24), if SRTM. The NUM file for both 3 arc second products (whether sampled or averaged) references the 3 x 3 center pixel. Note that NUMs less than 6 are water and those greater than 10 are land. The 3 arc second data was derived from the 1 arc second using sampling and averaging methods (See Figure 3 in the User Guide).The global 3 arc second number product is also available in NetCDF4 format as the SRTMGL3_NUMNC dataset and can be used with the corresponding SRTMGL3_NC elevation product.Known Issues* Known issues in the NASA SRTM are described in the following publication:Rodriguez, E., C. S. Morris, and J. E. Belz (2006), A global assessment of the SRTM performance, Photogramm. Eng. Remote Sens., 72, 249–260. https://doi.org/10.14358/PERS.72.3.249Improvements/Changes from Previous Versions* Voids in the Version 3.0 products have been filled with ASTER Global Digital Elevation Model (GDEM) Version 2.0, the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010), and the National Elevation Dataset (NED).
NASA Shuttle Radar Topography Mission Global 3 arc second Number NetCDF V003
공공데이터포털
The Land Processes Distributed Active Archive Center (LP DAAC) is responsible for the archive and distribution of NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) (https://earthdata.nasa.gov/about/competitive-programs/measures) SRTM, which includes the global 3 arc second (~90 meter) product. The 3 arc second data was derived from the 1 arc second using sampling and averaging methods. SRTMGL3_NUMNC is used along with the SRTMGL3_NC data product and offers the number count in NetCDF.NASA Shuttle Radar Topography Mission (SRTM) datasets result from a collaborative effort by the National Aeronautics and Space Administration (NASA) and the National Geospatial-Intelligence Agency (NGA - previously known as the National Imagery and Mapping Agency, or NIMA), as well as the participation of the German and Italian space agencies. The purpose of SRTM was to generate a near-global digital elevation model (DEM) of the Earth using radar interferometry. SRTM was a primary component of the payload on the Space Shuttle Endeavour during its STS-99 mission. Endeavour launched February 11, 2000 and flew for 11 days. SRTM collected data in swaths, which extend from ~30 degrees off-nadir to ~58 degrees off-nadir from an altitude of 233 kilometers (km). These swaths are ~225 km wide, and consisted of all land between 60° North (N) and 56° South (S) latitude. This accounts for about 80% of Earth’s total landmass.Improvements/Changes from Previous Versions * Voids in the Version 3.0 products have been filled with ASTER Global Digital Elevation Model (GDEM) Version 2.0, the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010), and the National Elevation Dataset (NED).
NASA Shuttle Radar Topography Mission Global 3 arc second sub-sampled V003
공공데이터포털
The Land Processes Distributed Active Archive Center (LP DAAC) is responsible for the archive and distribution of NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) (https://earthdata.nasa.gov/about/competitive-programs/measures) SRTM, which includes the global 3 arc second (~90 meter) sub-sampled product. The 3 arc second data was derived from the 1 arc second using sampling methods (See Figure 3 in the User Guide).The NASA SRTM data sets result from a collaborative effort by the National Aeronautics and Space Administration (NASA) and the National Geospatial-Intelligence Agency (NGA - previously known as the National Imagery and Mapping Agency, or NIMA), as well as the participation of the German and Italian space agencies. This collaboration aims to generate a near-global digital elevation model (DEM) of Earth using radar interferometry. SRTM was the primary (and virtually only) payload on the STS-99 mission of the Space Shuttle Endeavour, which launched February 11, 2000, and flew for 11 days.The SRTMGL3 data were sub-sampled from SRTM1GL (https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003) data that fall within that tile. These elevation files use the extension “.HGT”, meaning height (such as N37W105.SRTMGL3S.HGT). The primary goal of creating the Version 3 data was to eliminate gaps, or voids, that were present in earlier versions of SRTM data. In areas with limited data, existing topographical data were used to supplement the SRTM data to fill the voids. The source of each elevation pixel is identified in the corresponding SRTMGL3N (https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL3N.003) product (such as N37W105.SRTMGL3N.NUM).The SRTM swaths extended from ~30 degrees off-nadir to ~58 degrees off-nadir from an altitude of 233 kilometers (km), creating swaths ~225 km wide, and consisted of all land between 60 degrees N and 56 degrees S latitude to account for 80 percent of Earth’s total landmass. Known Issues* Known issues in the NASA SRTM are described in the following publication:Rodriguez, E., C. S. Morris, and J. E. Belz (2006), A global assessment of the SRTM performance, Photogramm. Eng. Remote Sens., 72, 249–260. https://doi.org/10.14358/PERS.72.3.249Improvements/Changes from Previous Versions* Voids in the Version 3.0 products have been filled with ASTER Global Digital Elevation Model (GDEM) Version 2.0, the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010), and the National Elevation Dataset (NED).