데이터셋 상세
미국
NGC 752 Chandra X-Ray Point Source Catalog
This table provides a list of X-ray sources detected in a ~140 ks Chandra X-ray observation of the open cluster NGC 752. For the sources with 2MASS counterparts, the values of their magnitudes in the J, H and K bands are also given. Very little is known about the evolution of stellar activity between the ages of the Hyades (0.8 Gyr) and the Sun (4.6 Gyr). To gain information on the typical level of coronal activity at a star's intermediate age, the authors have studied the X-ray emission from stars in the 1.9 Gyr-old open cluster NGC 752. They analyzed a ~ 140 ks Chandra observation of NGC 752 and a ~50 ks XMM-Newton observation of the same cluster. They detected 262 X-ray sources in the Chandra data and 145 sources in the XMM-Newton observation. Around 90% of the catalogued cluster members within Chandra's field of view are detected in the X-ray observation. The X-ray luminosity of all observed cluster members (28 stars) and of 11 cluster member candidates was derived. These data indicate that, at an age of 1.9 Gyr, the typical X-ray luminosity L<sub>x</sub> of the cluster members with masses of 0.8 to 1.2 solar masses is 1.3 x 10<sup>28</sup> erg s<sup>-1</sup>, which is approximately a factor of 6 times less intense than that observed in the younger Hyades. Given that L<sub>x</sub> is proportional to the square of a star's rotational rate, the median L<sub>x</sub> of NGC 752 is consistent, for t >= 1 Gyr, with a decaying rate in rotational velocities v<sub>rot</sub> ~ t<sup>-alpha</sup> with alpha ~ 0.75, steeper than the Skumanich relation (alpha ~ 0.5) and significantly steeper than that observed between the Pleiades and the Hyades (where alpha <0.3), suggesting that a change in the rotational regimes of the stellar interiors is taking place at an age of ~ 1 Gyr. The 135 ks observation of NGC 752 was performed by the Chandra ACIS camera on September 29, 2003 starting at 21:11:59 UT. The X-ray source detection was performed on the event list using the Wavelet Transform detection algorithm developed at Palermo Astronomical Observatory PWDETECT, available at <a href="http://oapa.astropa.unipa.it/progetti_ricerca/PWDetect">http://oapa.astropa.unipa.it/progetti_ricerca/PWDetect</a>. Initially, the energy range 0.2 - 10 keV was selected and the threshold for source detection was taken as to ensure a maximum of 1-2 spurious sources per field. 169 sources were detected in this way. The analysis of these sources hardness ratios showed, however, that all the catalogued stars in the field had low hardness ratios, HR < ~ 0.2, where HR is the number of photons in the 2 - 8 keV band over the number in the 0.5 - 2 keV band. Thus, to maximize the detection of stellar sources, PWDETECT was applied to the event list in the energy range from 0.5 - 2 keV. Using a detection threshold which ensures less than 1 spurious source per field leads to the detection of 188 sources, while lowering this threshold to 10 spurious sources per field, allows 262 sources to be identified in this energy range. This is a significant increase (well above the number expected if all the additional sources were spurious), thus the authors retained this list of 262 sources as their final list of sources in the NGC 752 field, with the caveat that ~ 10 sources among them are likely spurious. Note that the existence of ~ 10 spurious sources in the list is not so much of a problem in this context, because cluster members or candidate members are identified by the existence of a visible or near-IR counterpart. The authors searched for 2MASS counterparts to the X-ray sources using the 2MASS Point Source Catalogue (PSC) and a search radius of 3 arcsec and found a counterpart for 43 sources. Searching within the Point Source Reject Table of the 2MASS Extended Mission leads to the further identification of 1 counterpart (source number 87). This table was created by the HEASARC in October 2008 based on the electronic version of Table 6 from the reference paper which was
데이터 정보
연관 데이터
NGC 6357 Chandra X-Ray Point Source Catalog
공공데이터포털
This contains some of the results from the first high spatial resolution X-ray study of the massive star-forming region NGC 6357, which were obtained in a 38 ks Chandra/ACIS observation. Inside the brightest constituent of this large H II region complex is the massive open cluster Pismis 24. It contains two of the brightest and bluest stars known, yet remains poorly studied; only a handful of optically bright stellar members have been identified. The authors have investigated the cluster extent and initial mass function and detected ~800 X-ray sources with a limiting sensitivity of ~ 1030 erg s-1: this provides the first reliable probe of the rich intermediate-mass and low-mass population of this massive cluster, increasing the number of known members from optical studies by a factor of ~ 50. The high-luminosity end (log L[2-8 keV] >= 30.3 erg s-1) of the observed X-ray luminosity function in NGC 6357 is clearly consistent with a power-law relation as seen in the Orion Nebula Cluster and Cepheus B, yielding the first estimate of NGC 6357's total cluster population, a few times the known Orion population. The long-standing LX ~ 10-7 Lbol correlation for O stars is confirmed. Twenty-four candidate O stars and one possible new obscured massive YSO or Wolf-Rayet star are presented. Many cluster members are estimated to be intermediate-mass stars from available infrared photometry (assuming an age of ~ 1 Myr), but only a few exhibit K-band excess. The authors report the first detection of X-ray emission from an evaporating gaseous globule at the tip of a molecular pillar; this source is likely a B0-B2 protostar. NGC 6357 was observed on 2004 July 9 with the Imaging Array of the Advanced CCD Imaging Spectrometer (ACIS-I) on board Chandra. Four front-illuminated (FI) CCDs form the ACIS-I, which covers a field of view (FOV) of ~ 17 by 17 arcminutes. The observation was made in the standard Timed Exposure, Very Faint mode, with 3.2 s integration time and 5 pixel by 5 pixel event islands. The total exposure time was 38 ks and the satellite roll angle was 289 degrees. The aim point was centered on the O3 If star Pis 24-1, the heart of the OB association Pismis 24. The Chandra observation ID is 4477. Data reduction started with filtering the Level 1 event list processed by the Chandra X-ray Center pipeline to recover an improved Level 2 event list. To improve absolute astrometry, X-ray positions of ACIS-I sources were obtained by running the wavdetect wavelet-based source detection algorithm within the Chandra Interactive Analysis of Observations (CIAO) package on the original Level 2 event list, using only the central 8 by 8 arcminutes of the field. The resulting X-ray sources were matched to the 2MASS point source catalog. The authors calculated the position offsets between 277 X-ray sources and their NIR counterparts and applied an offset of +0.02" in right ascension (R.A.) and -0.33" in declination to the X-ray coordinates. From an initial list of 910 potential X-ray sources, the authors rejected sources with a PB > 1% likelihood of being a background fluctuation. The trimmed source list includes 779 sources, with full-band (0.5 - 8.0 keV) net (background-subtracted) counts ranging from 1.7 to 1837 counts. The 779 valid sources were purposely divided by the authors into two lists: the 665 sources with PB < 0.1% make up the primary source list of highly reliable sources (Table 1 in the reference paper; sources with source_type = 'M' in this table), and the remaining 114 sources with PB >= 0.1% likelihood of being spurious background fluctuations were listed as tentative sources in Table 2 of the reference paper (source_type = 'T' in this table). The authors believe that most of these tentative sources are likely real detections. This table was created by the HEASARC in October 2007 based on the merger of the electronic versions of Tables
NGC 752 XMM-Newton X-Ray Point Source Catalog
공공데이터포털
This table provides a list of X-ray sources detected in a ~50 ks XMM-Newton X-ray observation of the open cluster NGC 752. For the sources with 2MASS counterparts, the values of their magnitudes in the J, H and K bands are also given. Additionally, for the sources with a Chandra counterpart (within a search radius of 5 arcsec), the values of their Chandra source number (as given in the related Browse table NGC752CXO) are also given. Very little is known about the evolution of stellar activity between the ages of the Hyades (0.8 Gyr) and the Sun (4.6 Gyr). To gain information on the typical level of coronal activity at a star's intermediate age, the authors have studied the X-ray emission from stars in the 1.9 Gyr-old open cluster NGC 752. They analyzed a ~ 140 ks Chandra observation of NGC 752 and a ~50 ks XMM-Newton observation of the same cluster. They detected 262 X-ray sources in the Chandra data and 145 sources in the XMM-Newton observation. Around 90% of the catalogued cluster members within Chandra's field of view are detected in the X-ray observation. The X-ray luminosity of all observed cluster members (28 stars) and of 11 cluster member candidates was derived. These data indicate that, at an age of 1.9 Gyr, the typical X-ray luminosity Lx of the cluster members with masses of 0.8 to 1.2 solar masses is 1.3 x 1028 erg s-1, which is approximately a factor of 6 times less intense than that observed in the younger Hyades. Given that Lx is proportional to the square of a star's rotational rate, the median Lx of NGC 752 is consistent, for t >= 1 Gyr, with a decaying rate in rotational velocities vrot ~ t-alpha with alpha ~ 0.75, steeper than the Skumanich relation (alpha ~ 0.5) and significantly steeper than that observed between the Pleiades and the Hyades (where alpha <0.3), suggesting that a change in the rotational regimes of the stellar interiors is taking place at an age of ~ 1 Gyr. NGC 752 was observed for 49 ks by the XMM-Newton EPIC camera on February 5, 2003 starting at 23:29:25 UT, and the nominal pointing was towards J2000.0 RA and Declination of (01:57:38, +37:47:60), thus the XMM-Newton field-of-view (FOV) includes the Chandra FOV. For the source detection, the authors used the PWXDETECT code developed at Palermo Observatory and derived from the analogous Chandra PWDETECT code based on wavelet transform analysis. This allows the three EPIC exposures (PN, MOS1 and MOS2) to be combined in order to gain a deeper sensitivity with respect to the source detection based on single images. There were 145 point sources detected in the energy band 0.5 - 2.0 keV. An extended source (not listed in this present table), very likely a galaxy cluster, is also visible in the EPIC data. The authors searched for 2MASS counterparts to the XMM-Newton sources using a search radius of 5 arcsec and found a counterpart for 38 sources. As for the Chandra data, all sources with a visible counterpart from DLM94 have also a 2MASS counterpart, so this leaves 15 XMM-Newton sources with a 2MASS counterpart and no counterpart in Daniel et al. (1994, PASP, 106, 281); of these, 3 were also detected by Chandra; of the other 12, 10 are outside the Chandra FOV, while two are within it (XMM-Newton sources 58 and 65). Source 65 was caught by XMM-Newton during the decay phase of a flare, which explains why it is not detected in the Chandra data. For source 58 there is no immediate explanation for this, since the light curve does not show evidence of a flare. No additional near-IR counterpart to the XMM-Newton sources was found within the Point Source Reject Table of the 2MASS Extended Mission. This table was created by the HEASARC in October 2008 based on the electronic version of Table 7 from the reference paper which was obtained from the CDS website, i.e., their catalog J/A+A/490/113 file table7.dat. This is a service provided by NASA HEASARC .
NGC 2808 Chandra X-Ray Point Source Catalog
공공데이터포털
This table contains the sources detected in a Chandra X-ray observation of the Galactic globular cluster NGC 2808, as well as the corresponding XMM-Newton data for those sources which have XMM-Newton X-ray counterparts. Using new Chandra X-ray observations and existing XMM-Newton X-ray and Hubble Space Telescope far-ultraviolet observations, the authors aim to detect and identify the faint X-ray sources belonging to NGC 2808 in order to understand their role in the evolution of globular clusters. The authors classify the X-ray sources associated with the cluster by analysing their colors and variability. Previous observations with XMM-Newton and far-ultraviolet observations with Hubble are re-investigated to help identify the Chandra sources associated with the cluster. The authors compare their results to population synthesis models and observations of other Galactic globular clusters. NGC 2808 was observed with the Chandra X-ray Observatory Advanced CCD Imaging Spectrometer-Imager (ACIS-I) on 2007 June 19-21 (28 months after the XMM-Newton observation referred to the reference paper) for two distinct exposures of 46 and 11 kiloseconds. The authors detect 113 sources, of which 16 fall inside the half-mass radius of NGC 2808 and are concentrated towards the cluster core. This table was created by the HEASARC in February 2009 based on the electronic version of Table 1 from the paper which was obtained from the CDS (their catalog J/A+A/490/641 file table1.dat). This is a service provided by NASA HEASARC .
NGC 2264 Chandra X-Ray Point Source Catalog 2
공공데이터포털
With the goal of improving the member census of the NGC 2264 star-forming region and studying the origin of X-ray activity in young pre-main sequence (PMS) stars, the authors analyzed a deep, 100 ks long, Chandra ACIS observation covering a 17' x 17' field in the 3 Myr old star-forming region (SFR) NGC 2264. The preferential detection in X-rays of low-mass PMS stars gives strong indications of their membership. The authors study X-ray activity as a function of stellar and circumstellar characteristics by correlating the X-ray luminosities, temperatures, and absorptions with optical and near-infrared (NIR) data from the literature. The authors detected 420 X-ray point sources in the observation above a 4.6-sigma significance threshold using the PWDetect software. Optical and NIR counterparts were found in the literature for 85% of the sources. The authors argue that more than 90% of these counterparts are NGC 2264 members, thereby significantly increasing the known low-mass cluster population by about 100 objects. Among the sources without counterpart, about 50% are probably associated with members, several of which are expected to be previously unknown protostellar objects. With regard to activity, several previous findings are confirmed: X-ray luminosity is related to stellar mass, although with a large scatter; Lx/Lbol is close to, but almost invariably below, the saturation level of 10-3, especially when considering the quiescent X-ray emission. A comparison between classical T Tauri stars (CTTS) and weak-line T Tauri stars (WTTS) shows several differences: CTTS have, at any given mass, activity levels that are both lower and more scattered than WTTS; emission from CTTS may also be more time variable and is on average slightly harder than for WTTS. However, there is evidence in some CTTS of extremely cool, ~0.1 - 0.2 keV, plasma which the authors speculate is due to plasma heated by accretion shocks. The X-ray spectra of the 199 sources with more than 50 detected photons were analyzed by the authors. Spectral fits were performed with XSPEC 11.3 and with several shell and TCL scripts to automate the process. For each source, they fit the data in the [0.5 - 7.0] keV energy interval with several model spectra: one and two isothermal components (APEC), subject to photoelectric absorption from interstellar and circumstellar material (WABS). Plasma abundances for one-temperature (1T) models were fixed at 0.3 times the solar abundances, while they were both fixed at that value and treated as a free parameter for the two-temperature (2T) models. The absorbing column densities, NH, were both left as a free parameter and fixed at values corresponding to the optically/NIR determined extinctions, when available: NH = 1.6 x 1021 AV. This table contains the X-ray, optical and NIR data for the 420 detected X-ray sources; it does not contain the master catalog of 1598 optical/NIR sources within the ACIS FOV which was presented in Table 3 of the reference paper, available at https://cdsarc.cds.unistra.fr/ftp/cats/J/A+A/455/903/table3.dat This table was created by the HEASARC in March 2007 based on CDS Catalog J/A+A/455/903 files table1.dat, table4.dat and table6.dat. This is a service provided by NASA HEASARC .
NGC 4649 Chandra X-Ray Point Source Catalog 2
공공데이터포털
This table contains the main X-ray source catalog for the Chandra monitoring observations of the 16.5-Mpc distant elliptical galaxy, NGC 4649. The galaxy has been observed with Chandra ACIS-S3 in six separate pointings, reaching a total exposure of 299 ks. There are 501 X-ray sources detected in the 0.3-8.0 keV band in the merged observation or in one of the six individual observations; 399 sources are located within the D25 ellipse. The observed 0.3-8.0 keV luminosities of these 501 sources range from 9.3 x 1036 erg s-1 to 5.4 x 1039 erg s-1. The 90% detection completeness limit within the D25 ellipse is 5.5 x 1037 erg s-1. Based on the surface density of background active galactic nuclei (AGNs) and the detection completeness, we expect ~ 45 background AGNs among the catalog sources (~ 15 within the D25 ellipse). There are nine sources with luminosities greater than 1039 erg s-1, which are candidates for ultraluminous X-ray sources. The nuclear source of NGC 4649 is a low-luminosity AGN, with an intrinsic 2.0-8.0 keV X-ray luminosity of 1.5 x 1038 erg s-1. The X-ray colors suggest that the majority of the catalog sources are low-mass X-ray binaries (LMXBs). The authors find that 164 of the 501 X-ray sources show long-term variability, indicating that they are accreting compact objects, and discover four transient candidates and another four potential transients. They also identify 173 X-ray sources (141 within the D25 ellipse) that are associated with globular clusters (GCs) based on Hubble Space Telescope and ground-based data; these LMXBs tend to be hosted by red GCs. Although NGC 4649 has a much larger population of X-ray sources than the structurally similar early-type galaxies, NGC 3379 and NGC 4278, the X-ray source properties are comparable in all three systems. This HEASARC table contains the main Chandra source catalog of the basic properties of the 501 X-ray detected sources (Table 3 in the reference paper which includes both sources detected in the merged X-ray image as well as a number only detected in the individual observations), and also the information on source counts, hardness ratios and soft and hard X-ray colors in the merged observation for the same 501 X-ray detected sources (Table 4 in the reference paper). It does not contain the information on source counts, hardness ratios and soft and hard X-ray colors for these same sources in the six individual observations that were contained in Tables 5 - 10 of the reference paper. This table was created by the HEASARC in March 2013 based on the electronic version of Tables 3 and 4 from the reference paper which were obtained from the ApJS website.. This is a service provided by NASA HEASARC .
NGC 2547 XMM-Newton X-Ray Point Source Catalog
공공데이터포털
This table contains a list of point sources detected by XMM-Newton EPIC in a pointing towards the young open cluster NGC 2547, made in order to allow the authors to characterize coronal activity in solar-type stars, and stars of lower mass, at an age of 30 Myr. X-ray emission was seen from stars at all spectral types, peaking among G stars at luminosities (0.3 - 3 keV) of Lx ~= 1030.5 erg/s and declining to Lx <= 1029 erg/s among M stars with masses >=0.2 solar masses. Coronal spectra show evidence for multi-temperature differential emission measures and low coronal metal abundances of Z~= 0.3. Most of the solar-type stars in NGC 2547 exhibit saturated or even supersaturated X-ray activity levels. The median levels of Lx and Lx/Lbol in the solar-type stars of NGC 2547 are very similar to those in T-Tauri stars of the Orion Nebula cluster (ONC), but an order of magnitude higher than in the older Pleiades. The spread in X-ray activity levels among solar-type stars in NGC 2547 is much smaller than in older or younger clusters. This table contains the properties of those X-ray sources which are correlated with optical cluster members (see Section 2.2 of the reference paper for details on the correlation procedure that was adopted), as well as the properties of those X-ray sources which are uncorrelated with any optical cluster members. The table lists the cross-identifications with optical catalogs for the candidate cluster sources along with their X-ray luminosities and X-ray to bolometric flux ratios, as well as the correlations between cluster members which were detected by XMM-Newton and those detected 7 years earlier by the ROSAT HRI instrument, along with the X-ray luminosities and flux ratios as determined by the HRI. This table was created by the HEASARC in February 2007 based on CDS Catalog J/MNRAS/367/781 files table1.dat, table2.dat, table3.dat and table7.dat. This is a service provided by NASA HEASARC .
NGC 2244/Rosette Nebula Chandra X-Ray Point Source Catalog
공공데이터포털
This table contains the point source catalog based on the first high spatial resolution X-ray study of NGC 2244, the 2 Myr old stellar cluster in the Rosette Nebula, using Chandra. Over 900 X-ray sources are detected within 20 arcminutes of the cluster central position (J2000.0 RA and Dec of 6 31 59.9, +4 55 36); 77% of these X-ray sources have optical or FLAMINGOS NIR stellar counterparts and are mostly previously uncataloged young cluster members. The X-ray-selected population is estimated to be nearly complete between 0.5 and 3 Msolar. A number of further results emerge from the analysis: (1) The X-ray luminosity function (XLF) and the associated K-band LF indicate a normal Salpeter IMF for NGC 2244. This is inconsistent with the top-heavy IMF reported from earlier optical studies that lacked a good census of < 4 Msolar stars. By comparing the NGC 2244 and Orion Nebula Cluster XLFs, the authors estimate a total population of ~2000 stars in NGC 2244. (2) The spatial distribution of X-ray stars is strongly concentrated around the central O5 star, HD 46150. The other early O star, HD 46223, has few companions. The cluster's stellar radial density profile shows two distinctive structures: a power-law cusp around HD 46150 that extends to ~0.7 pc, surrounded by an isothermal sphere extending out to 4 pc with core radius 1.2 pc. This double structure, combined with the absence of mass segregation, indicates that this 2 Myr old cluster is not in dynamical equilibrium. (3) The fraction of X-ray-selected cluster members with K-band excesses caused by inner protoplanetary disks is 6%, slightly lower than the 10% disk fraction estimated from the FLAMINGOS study based on the NIR-selected sample. (4) X-ray luminosities for 24 stars earlier than B4 confirm the long-standing log (LX/Lbol) ~ -7 relation. The Rosette OB X-ray spectra are soft and consistent with the standard model of small-scale shocks in the inner wind of a single massive star. This table was created by the HEASARC in July 2008 based on electronic versions of Tables 2, 3, 4, 5 and 6 of the reference paper which were obtained from the electronic ApJ web site. This is a service provided by NASA HEASARC .
NGC 6334 Chandra X-Ray Point Source Catalog
공공데이터포털
The full stellar population of NGC 6334, one of the most spectacular regions of massive star formation in the nearby Galaxy, has not been well sampled in past studies. The authors have analyzed a mosaic of two Chandra X-ray Observatory images of the region using sensitive data analysis methods, giving a list of 1607 faint X-ray sources with arcsecond positions and approximate line-of-sight absorption. About 95% of these are expected to be cluster members, most lower mass pre-main-sequence stars. Extrapolating to low X-ray levels, the total stellar population is estimated to be 20,000 - 30,000 pre-main-sequence stars. The X-ray sources show a complicated spatial pattern with ~10 distinct star clusters. The heavily obscured clusters are mostly associated with previously known far-infrared sources and radio H II regions. The lightly obscured clusters are mostly newly identified in the X-ray images. Dozens of likely OB stars are found, both in clusters and dispersed throughout the region, suggesting that star formation in the complex has proceeded over millions of years. A number of extraordinarily heavily absorbed X-ray sources are associated with the active regions of star formation. This table was created by the HEASARC in August 2009 based on the electronic version of table 1 from the above reference which were obtained from the AJ web site. This is a service provided by NASA HEASARC .
NGC 2403 Central 3-kpc Region Chandra Source Catalog
공공데이터포털
Archival Chandra observations are used to study the X-ray emission associated with star formation in the central region of the nearby (D = 3.2 Mpc, 1 arcminute = 1 kpc) SAB(s)cd galaxy NGC 2403. The distribution of X-ray emission is compared to the morphology visible at other wavelengths using complementary Spitzer, Galaxy Evolution Explorer, and ground-based H-alpha imagery. In general, the brightest X-ray emission is associated with H II regions and to other star-forming structures, but is more pervasive, existing also in regions devoid of strong H-alpha and UV emission. NGC 2403 was observed in full-frame mode with the Chandra ACIS-S on four occasions for a total of ~ 180 ks, on 2001 Apr 17, 2004 Aug 13, 2004 Oct 03 and 2004 Dec 22. The source-finding tool described by Tennant (2006, AJ, 132, 1372) was applied to all 4 individual data sets and to the merged data set in order to search for discrete X-ray sources. The search was limited to the cnetral 6' x 6' (6 kpc x 6 kpc) region and to events within the full Chandra energy range 0.3-8.0 keV. Fifty eight point sources were detected in the merged data set with a signal-to-noise ratio (S/N) above 2.8 and with a minimum of 5 sigma above background uncertainty (corresponding to a detection limit of 8-10 counts for a typical on-axis source). These sources were listed in Table 2 of the reference paper and and are contained in the present HEASARC table. They can be selected by specifying source_type = 'Point Source'. The X-ray data were also examined to see if there was emission from known SNRs and H II regions after masking out the afore-mentioned X-ray point sources (see Section 2.1 of the reference paper for full details). Events falling within the areas defined by 24 optically identified SNRs that were imaged on the S3 chip in the first three observations were used to construct a composite spectrum. This stacked spectrum was fit by an absorbed 1-T APEC model with the hydrogen column density as a free parameter in XSPEC which was then used to translate the observed net count rates into X-ray luminosities. Only 4 or 5 of these SNRs are likely to be 'truely' detected X-ray sources. The SNRs can be selected in the present HEASARC table by specifying source_type ='SNR'. A similar procedure was used to search the X-ray data for the presence of X-ray emission at the locations of 47 H II regions in NGC 2403. Events falling within the areas defined by 47 H II regiuons that were imaged on the S3 chip in the first three observations were used to construct a composite spectrum. This stacked spectrum was fit by an absorbed 2-T APEC model with the hydrogen column density as a free parameter in XSPEC which was then used to translate the observed net count rates into X-ray luminosities. Only the most X-ray-luminous H II regions are likely to be 'truely' detected X-ray sources. The H II regions can be selected in the present HEASARC table by specifying source_type ='HII Region'. This table was created by the HEASARC in June 2012 based on CDS Catalog J/AJ/139/1066 files table2.dat, table5.dat and table7.dat. This is a service provided by NASA HEASARC .
NGC 2237 Chandra X-Ray Point Source Catalog
공공데이터포털
The authors have obtained high spatial resolution Chandra X-ray images of the NGC 2237 young stellar cluster on the periphery of the Rosette Nebula. They detect 168 X-ray sources, 80% of which have stellar counterparts in USNO, Two Micron All Sky Survey, and deep FLAMINGOS images. These constitute the first census of the cluster members with 0.2 <~ M <~ 2 Msun. Star locations in near-infrared color-magnitude diagrams indicate a cluster age of around 2 Myr with a visual extinction of 1 <~ AV <~ 3 at 1.4 kpc, the distance of the Rosette Nebula's main cluster NGC 2244. The authors derive the K-band luminosity function and the X-ray luminosity function of the cluster, which indicate a population of ~ 400-600 stars. The X-ray-selected sample shows a K-excess disk frequency of 13%. The young Class II counterparts are aligned in an arc ~3 pc long suggestive of a triggered formation process induced by the O stars in NGC 2244. The diskless Class III sources are more dispersed. Several X-ray emitting stars are located inside the molecular cloud and around gaseous pillars projecting from the cloud. These stars, together with a previously unreported optical outflow originating inside the cloud, indicate that star formation is continuing at a low level and the cluster is still growing. This X-ray view of young stars on the western side of the Rosette Nebula complements the authors' earlier studies of the central cluster NGC 2244 and the embedded clusters on the eastern side of the Nebula. The large-scale distribution of the clusters and molecular material is consistent with a scenario in which the rich central NGC 2244 cluster formed first, and its expanding H II region triggered the formation of the now-unobscured satellite clusters Rosette Molecular Cloud (RMC) XA and NGC 2237. A large swept-up shell of material around the H II region is now in a second phase of collect-and-collapse fragmentation, leading to the recent formation of subclusters. Other clusters deeper in the molecular cloud appear unaffected by the Rosette Nebula expansion. Some sources which have information from published catalogs are listed by their source_number value below, where for convenience, [OI81] = Ogura & Ishida (1981, PASJ, 33, 149), [MJD95] = Massey, Johnson, & Degioia-Eastwood (1995, ApJ, 454, 151) and [BC02] = Berghofer & Christian (2002, A&A, 384, 890):
 53 = [OI81] 14 = [MJD95] 104; spectral type B1V; pmRA=11.0 mas/yr, pmDE=-2.8 mas/yr; 54 = [OI81] 10 = [MJD95] 108; spectral type B2V; pmRA=-2.3 mas/yr, pmDE=-11.9 mas/yr; 61 = V539 Mon [OI81] 13 = [MJD95] 110; MSX6C G206.1821-02.3456; pmRA=2.8 mas/yr, pmDE=0.4 mas/yr; 71 = [OI81] 12 = [MJD95] 102; pmRA=6.8 mas/yr, pmDE=0.6 mas/yr; 128 = [OI81] 35 = [MJD95] 471; spectral type A2:; pmRA=-0.8 mas/yr, pmDE=3.6 mas/yr; 138 = [OI81] 36 = [MJD95] 497; spectral type B5; pmRA=6.5 mas/yr, pmDE=2.1 mas/yr; 141 = [MJD95] 498; pmRA=-3.0 mas/yr, pmDE=1.9 mas/yr; 149 = [BC02] 11; known X-ray source; log(Lx(ROSAT/PSPC))=31.01 erg/s; pmRA=0.6 mas/yr, pmDE=-12.6 mas/yr; 161 = [MJD95] 653; pmRA=-1.0 mas/yr, pmDE=-5.4 mas/yr 
This table was created by the HEASARC in July 2010 based on electronic versions of Tables 1, 2, 3 and 4 of the reference paper which were obtained from the electronic ApJ web site. To distinguish between the 130 X-ray sources in the primary sample (Table 1 of the reference paper) and the 38 X-ray sources in the tentative sample (Table 2 of the reference paper), the HEASARC has created a parameter called source_sample which is set to 'P' for the primary sources and to 'T' for the tentative sources. This is a service provided by NASA HEASARC .