Radiosonde Data: NOAA (FIFE)
공공데이터포털
The NOAA Radiosonde Observations Data Set contains data that were extracted from the NOAA operational analysis system and transmitted to the FIS. Data are available from July 1985 to October 1988, there are 1123 days of data during this period with data at twelve hour intervals. These data were collected using sondes released in Dodge City and Topeka, Kansas, 337 km and 68 km, respectively, from the FIFE site. Radiosonde observations were made to determine the pressure, temperature, and humidity from the surface to the point where the sounding was terminated.
Atmospheric Profiles: TOVS - NOAA (FIFE)
공공데이터포털
The TOVS data were acquired from NOAA/NESDIS to monitor atmospheric conditions that occurred over the FIFE study area during 1987. The TOVS data were obtained from NESDIS in the standard TOVS sounding product format containing atmospheric sounding data for NOAA-9 and NOAA-10 satellites over the FIFE study area. The TOVS sounding products information is derived from three sensors which measure the intensity of upwelling radiation in the various spectral intervals that occur at maxima over broad layers and depths of the atmosphere. These radiance measurements are processed into Earth-located, calibrated radiance values, "clear" radiances (radiances corrected for cloud effects and angle-of-view), estimates of water vapor in three atmospheric layers (converted to precipitable water in these layers), mean temperatures for selected atmospheric layers, tropopause height and temperature estimates, and geopotential thickness of selected atmospheric layers.
TOLNet NOAA Chemical Sciences Laboratory Data
공공데이터포털
TOLNet_CSL_Data is the lidar data collected by the Tunable Optical Profile for Aerosol and oZone (TOPAZ) lidar at the NOAA Chemical Sciences Laboratory (CSL) in Boulder, Colorado as part of the Tropospheric Ozone Lidar Network (TOLNet). Data collection for this product is ongoing.In the troposphere, ozone is considered a pollutant and is important to understand due to its harmful effects on human health and vegetation. Tropospheric ozone is also significant for its impact on climate as a greenhouse gas. Operating since 2011, TOLNet is an interagency collaboration between NASA, NOAA, and the EPA designed to perform studies of air quality and atmospheric modeling as well as validation and interpretation of satellite observations. TOLNet is currently comprised of seven Differential Absorption Lidars (DIAL). Each of the lidars are unique, and some have had a long history of ozone observations prior to joining the network. Five lidars are mobile systems that can be deployed at remote locations to support field campaigns. This includes the Langley Mobile Ozone Lidar (LMOL) at NASA Langley Research Center (LaRC), the Tropospheric Ozone (TROPOZ) lidar at the Goddard Space Flight Center (GSFC), the Tunable Optical Profile for Aerosol and oZone (TOPAZ) lidar at the NOAA Chemical Sciences Laboratory (CSL) in Boulder, Colorado, the Autonomous Mobile Ozone LIDAR instrument for Tropospheric Experiments (AMOLITE) lidar at Environment and Climate Change Canada (ECCC) in Toronto, Canada, and the Rocket-city O3 Quality Evaluation in the Troposphere (RO3QET) lidar at the University of Alabama in Huntsville, Alabama. The remaining lidars, the Table Mountain Facility (TMF) tropospheric ozone lidar system located at the NASA Jet Propulsion Laboratory (JPL), and City College of New York (CCNY) New York Tropospheric Ozone Lidar System (NYTOLS) are fixed systems.TOLNet seeks to address three science objectives. The primary objective of the network is to provide high spatio-temporal measurements of ozone from near the surface to the top of the troposphere. Detailed observations of ozone structure allow science teams and the modeling community to better understand ozone in the lower-atmosphere and to assess the accuracy and vertical resolution with which geosynchronous instruments could retrieve the observed laminar ozone structures. Another objective of TOLNet is to identify an ozone lidar instrument design that would be suitable to address the needs of NASA, NOAA, and EPA air quality scientists who express a desire for these ozone profiles. The third objective of TOLNET is to perform basic scientific research into the processes create and destroy the ubiquitously observed ozone laminae and other ozone features in the troposphere. To help fulfill these objectives, lidars that are a part of TOLNet have been deployed to support nearly ten campaigns thus far. This includes campaigns such as the Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission, the Korea United States Air Quality Study (KORUS-AQ), the Tracking Aerosol Convection ExpeRiment – Air Quality (TRACER-AQ) campaign, the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ), the Long Island Sound Tropospheric Ozone Study (LISTOS), and the Ozone Water–Land Environmental Transition Study (OWLETS).