데이터셋 상세
미국
PEM Tropics B P-3B Remotely Sensed Data
PEM-Tropics-B_AircraftRemoteSensing_P3B_Data is the remote sensing data collected onboard the P-3B aircraft during the Pacific Exploratory Mission (PEM) Tropics B suborbital campaign. Data from actinometers and the Scanning Actinic Flux Spectroradiometer (SAFS) are featured in this collection. Data collection for this product is complete.From 1983-2001, NASA conducted a collection of field campaigns as part of the Global Tropospheric Experiment (GTE). Among those was PEM, which intended to improve the scientific understanding of human influence on tropospheric chemistry. Part of the PEM field campaigns were focused on the tropical Pacific region (PEM-Tropics) which was recognized as a “very large chemical vessel.” The overarching science objective was to assess the anthropogenic impact on tropospheric oxidizing power. A secondary objective was to investigate the impact of atmospheric sulfur chemistry, including oxidation of marine biogenic emission of dimethyl sulfide (DMS) on aerosol loading and radiative effect, which is of critical importance in the assessment of global climate change. The PEM-Tropics mission was conducted in two phases to contrast the influence of biomass burning in the dry season and the “relatively clean” wet season. The first, PEM-Tropics A, was carried out during the end of the dry season (August-September 1996), and the second, PEM-Topics B, was conducted during the wet season (March-April 1999). To accomplish its objectives, PEM-Tropics enlisted the NASA DC-8 and P-3B aircrafts to carry out longitudinal and latitudinal surveys at various altitudes as well as vertical profile sampling across the Pacific basin. Both aircrafts were equipped with in-situ instruments measuring hydroperoxyl radicals (HOx), ozone (O3), photochemical precursors (including, reactive nitrogen species and non-methane hydrocarbon species), and intermediate products (e.g., hydrogen peroxide (H2O2), formaldehyde (CH2O), and acetic acid (CH3OOH). The P3-B in-situ instrument payload also included a direct measurement of hydroxyl (OH) for both missions, while the OH and hydroperoxyl radical (HO2) measurements were added to DC-8 aircraft for PEM-Tropics B. Taking advantage of its excellent low altitude capability, the P-3B was instrumented with a comprehensive sulfur measurement package and conducted pseudo-Lagragian sampling for evaluating DMS oxidation chemistry, including measurements of DMS, sulfur dioxide (SO2), sulfuric acid (H2SO4), and methylsulfonic acid (MSA) as well as the first airborne measurement of dimethyl sulfoxide (DMSO) during PEM-Tropics B. More importantly, it was the first time that DMS (the source), OH and O3 (primary oxidants), and products (DMSO, MSA, H2SO4, SO2) were measured simultaneously aboard an aircraft in the tropical pacific. These observations, specifically DMSO, presented a substantial challenge to the DMS oxidation kinetics to this day. The DC-8 aircraft was equipped with the Differential Absoprtion Lidar (DIAL) during PEM-Tropics A, and the differential absorption lidars DIAL and LASE during PEM-Tropics B. These lidars provided real-time information for fine tuning the flight tracks to capture sampling opportunities. The lidar data products themselves provide valuable information of vertical profiles of ozone as well as aerosol and water vapor in tropical Pacific Furthermore, both aircrafts were fitted with instruments for aerosol composition and microphysical property measurements. Detailed description related to the motivation, implementation, and instrument payloads are available in the PEM-Tropics A overview paper and the PEM-Tropics B overview paper. Most of the publications based on PEM-Tropics A and B observations are available in the Journal of Geophysical Research special issues: Pacific Exploratory Mission-Tropics A and NASA Global Tropospheric Experiment Pacific Exploratory Mission in the Tropics Phase B: Measurement and Analyses (PEM-Tropics B), while other publications such as Nowak
연관 데이터
PEM Tropics B P-3B Trajectory Data
공공데이터포털
PEM-Tropics-B_Trajectory_P3B_Data is the trajectory data collected onboard the P-3B aircraft during the Pacific Exploratory Mission (PEM) Tropics B suborbital campaign. Data collection for this product is complete.From 1983-2001, NASA conducted a collection of field campaigns as part of the Global Tropospheric Experiment (GTE). Among those was PEM, which intended to improve the scientific understanding of human influence on tropospheric chemistry. Part of the PEM field campaigns were focused on the tropical Pacific region (PEM-Tropics) which was recognized as a “very large chemical vessel.” The overarching science objective was to assess the anthropogenic impact on tropospheric oxidizing power. A secondary objective was to investigate the impact of atmospheric sulfur chemistry, including oxidation of marine biogenic emission of dimethyl sulfide (DMS) on aerosol loading and radiative effect, which is of critical importance in the assessment of global climate change. The PEM-Tropics mission was conducted in two phases to contrast the influence of biomass burning in the dry season and the “relatively clean” wet season. The first, PEM-Tropics A, was carried out during the end of the dry season (August-September 1996), and the second, PEM-Topics B, was conducted during the wet season (March-April 1999). To accomplish its objectives, PEM-Tropics enlisted the NASA DC-8 and P-3B aircrafts to carry out longitudinal and latitudinal surveys at various altitudes as well as vertical profile sampling across the Pacific basin. Both aircrafts were equipped with in-situ instruments measuring hydroperoxyl radicals (HOx), ozone (O3), photochemical precursors (including, reactive nitrogen species and non-methane hydrocarbon species), and intermediate products (e.g., hydrogen peroxide (H2O2), formaldehyde (CH2O), and acetic acid (CH3OOH). The P3-B in-situ instrument payload also included a direct measurement of hydroxyl (OH) for both missions, while the OH and hydroperoxyl radical (HO2) measurements were added to DC-8 aircraft for PEM-Tropics B. Taking advantage of its excellent low altitude capability, the P-3B was instrumented with a comprehensive sulfur measurement package and conducted pseudo-Lagragian sampling for evaluating DMS oxidation chemistry, including measurements of DMS, sulfur dioxide (SO2), sulfuric acid (H2SO4), and methylsulfonic acid (MSA) as well as the first airborne measurement of dimethyl sulfoxide (DMSO) during PEM-Tropics B. More importantly, it was the first time that DMS (the source), OH and O3 (primary oxidants), and products (DMSO, MSA, H2SO4, SO2) were measured simultaneously aboard an aircraft in the tropical pacific. These observations, specifically DMSO, presented a substantial challenge to the DMS oxidation kinetics to this day. The DC-8 aircraft was equipped with the Differential Absoprtion Lidar (DIAL) during PEM-Tropics A, and the differential absorption lidars DIAL and LASE during PEM-Tropics B. These lidars provided real-time information for fine tuning the flight tracks to capture sampling opportunities. The lidar data products themselves provide valuable information of vertical profiles of ozone as well as aerosol and water vapor in tropical Pacific Furthermore, both aircrafts were fitted with instruments for aerosol composition and microphysical property measurements. Detailed description related to the motivation, implementation, and instrument payloads are available in the PEM-Tropics A overview paper and the PEM-Tropics B overview paper. Most of the publications based on PEM-Tropics A and B observations are available in the Journal of Geophysical Research special issues: Pacific Exploratory Mission-Tropics A and NASA Global Tropospheric Experiment Pacific Exploratory Mission in the Tropics Phase B: Measurement and Analyses (PEM-Tropics B), while other publications such as Nowak et al. (2001) were published prior to the special issues.
TRACE-P P-3B Trajectory Data
공공데이터포털
TRACE-P_Trajectory_P3B_Data is the trajectory data collected onboard the P-3B aircraft during the Transport and Chemical Evolution over the Pacific (TRACE-P) suborbital campaign. Data from the Chemical Ionization Mass Spectrometer (CIMS) and the Differential Absorption of CO, CH4, N2O Measurements (DACOM) instruments are featured in this collection. Data collection for this product is complete.The NASA TRACE-P mission was a part of NASA’s Global Tropospheric Experiment (GTE) – an assemblage of missions conducted from 1983-2001 with various research goals and objectives. TRACE-P was a multi-organizational campaign with NASA, the National Center for Atmospheric Research (NCAR), and several US universities. TRACE-P deployed its payloads in the Pacific between the months of March and April 2001 with the goal of studying the air chemistry emerging from Asia to the western Pacific. Along with this, TRACE-P had the objective studying the chemical evolution of the air as it moved away from Asia.  In order to accomplish its goals, the NASA DC-8 aircraft and NASA P-3B aircraft were deployed, each equipped with various instrumentation. TRACE-P also relied on ground sites, and satellites to collect data. The DC-8 aircraft was equipped with 19 instruments in total while the P-3B boasted 21 total instruments. Some instruments on the DC-8 include the Nephelometer, the GCMS, the Nitric Oxide Chemiluminescence, the Differential Absorption Lidar (DIAL), and the Dual Channel Collectors and Fluorometers, HPLC. The Nephelometer was utilized to gather data on various wavelengths including aerosol scattering (450, 550, 700nm), aerosol absorption (565nm), equivalent BC mass, and air density ratio. The GCMS was responsible for capturing a multitude of compounds in the atmosphere, some of which include CH4, CH3CHO, CH3Br, CH3Cl, CHBr3, and C2H6O. DIAL was used for a variety of measurements, some of which include aerosol wavelength dependence (1064/587nm), IR aerosol scattering ratio (1064nm), tropopause heights and ozone columns, visible aerosol scattering ratio, composite tropospheric ozone cross-sections, and visible aerosol depolarization. Finally, the Dual Channel Collectors and Fluorometers, HPLC collected data on H2O2, CH3OOH, and CH2O in the atmosphere. The P-3B aircraft was equipped with various instruments for TRACE-P, some of which include the MSA/CIMS, the Non-dispersive IR Spectrometer, the PILS-Ion Chromatograph, and the Condensation particle counter and Pulse Height Analysis (PHA). The MSA/CIMS measured OH, H2SO4, MSA, and HNO3. The Non-dispersive IR Spectrometer took measurements on CO2 in the atmosphere. The PILS-Ion Chromatograph recorded measurements of compounds and elements in the atmosphere, including sodium, calcium, potassium, magnesium, chloride, NH4, NO3, and SO4. Finally, the Condensation particle counter and PHA was used to gather data on total UCN, UCN 3-8nm, and UCN 3-4nm. Along with the aircrafts, ground stations measured air quality from China along with C2H2, C2H6, CO, and HCN. Finally, satellites imagery was used to collect a multitude of data, some of the uses were to observe the history of lightning flashes, SeaWiFS cloud imagery, 8-day exposure to TOMS aerosols, and SeaWiFS aerosol optical thickness. The imagery was used to best aid in planning for the aircraft deployment.
TRACE-P Supplementary Satellite Data
공공데이터포털
TRACE-P_Satellite_Data is the supplementary satellite data collected during the Transport and Chemical Evolution over the Pacific (TRACE-P) suborbital campaign. Data from the Multi-Angle Imaging SpectroRadiometer (MISR) and the Measurements of Pollution in the Troposphere (MOPITT) satellite instruments are featured in this collection. Data collection for this product is complete.The NASA TRACE-P mission was a part of NASA’s Global Tropospheric Experiment (GTE) – an assemblage of missions conducted from 1983-2001 with various research goals and objectives. TRACE-P was a multi-organizational campaign with NASA, the National Center for Atmospheric Research (NCAR), and several US universities. TRACE-P deployed its payloads in the Pacific between the months of March and April 2001 with the goal of studying the air chemistry emerging from Asia to the western Pacific. Along with this, TRACE-P had the objective studying the chemical evolution of the air as it moved away from Asia.  In order to accomplish its goals, the NASA DC-8 aircraft and NASA P-3B aircraft were deployed, each equipped with various instrumentation. TRACE-P also relied on ground sites, and satellites to collect data. The DC-8 aircraft was equipped with 19 instruments in total while the P-3B boasted 21 total instruments. Some instruments on the DC-8 include the Nephelometer, the GCMS, the Nitric Oxide Chemiluminescence, the Differential Absorption Lidar (DIAL), and the Dual Channel Collectors and Fluorometers, HPLC. The Nephelometer was utilized to gather data on various wavelengths including aerosol scattering (450, 550, 700nm), aerosol absorption (565nm), equivalent BC mass, and air density ratio. The GCMS was responsible for capturing a multitude of compounds in the atmosphere, some of which include CH4, CH3CHO, CH3Br, CH3Cl, CHBr3, and C2H6O. DIAL was used for a variety of measurements, some of which include aerosol wavelength dependence (1064/587nm), IR aerosol scattering ratio (1064nm), tropopause heights and ozone columns, visible aerosol scattering ratio, composite tropospheric ozone cross-sections, and visible aerosol depolarization. Finally, the Dual Channel Collectors and Fluorometers, HPLC collected data on H2O2, CH3OOH, and CH2O in the atmosphere. The P-3B aircraft was equipped with various instruments for TRACE-P, some of which include the MSA/CIMS, the Non-dispersive IR Spectrometer, the PILS-Ion Chromatograph, and the Condensation particle counter and Pulse Height Analysis (PHA). The MSA/CIMS measured OH, H2SO4, MSA, and HNO3. The Non-dispersive IR Spectrometer took measurements on CO2 in the atmosphere. The PILS-Ion Chromatograph recorded measurements of compounds and elements in the atmosphere, including sodium, calcium, potassium, magnesium, chloride, NH4, NO3, and SO4. Finally, the Condensation particle counter and PHA was used to gather data on total UCN, UCN 3-8nm, and UCN 3-4nm. Along with the aircrafts, ground stations measured air quality from China along with C2H2, C2H6, CO, and HCN. Finally, satellites imagery was used to collect a multitude of data, some of the uses were to observe the history of lightning flashes, SeaWiFS cloud imagery, 8-day exposure to TOMS aerosols, and SeaWiFS aerosol optical thickness. The imagery was used to best aid in planning for the aircraft deployment.
TRACE-P In Situ P-3B Meteorology and Navigation Data
공공데이터포털
TRACE-P_MetNav_Aircraft_InSitu_P3B_Data is the in situ meteorology and navigation data collected onboard the P-3B aircraft during the Transport and Chemical Evolution over the Pacific (TRACE-P) suborbital campaign. Data from the P-3B Turbulent Air Motion Measurement System (TAMMS) is featured in this collection. Data collection for this product is complete.The NASA TRACE-P mission was a part of NASA’s Global Tropospheric Experiment (GTE) – an assemblage of missions conducted from 1983-2001 with various research goals and objectives. TRACE-P was a multi-organizational campaign with NASA, the National Center for Atmospheric Research (NCAR), and several US universities. TRACE-P deployed its payloads in the Pacific between the months of March and April 2001 with the goal of studying the air chemistry emerging from Asia to the western Pacific. Along with this, TRACE-P had the objective studying the chemical evolution of the air as it moved away from Asia.  In order to accomplish its goals, the NASA DC-8 aircraft and NASA P-3B aircraft were deployed, each equipped with various instrumentation. TRACE-P also relied on ground sites, and satellites to collect data. The DC-8 aircraft was equipped with 19 instruments in total while the P-3B boasted 21 total instruments. Some instruments on the DC-8 include the Nephelometer, the GCMS, the Nitric Oxide Chemiluminescence, the Differential Absorption Lidar (DIAL), and the Dual Channel Collectors and Fluorometers, HPLC. The Nephelometer was utilized to gather data on various wavelengths including aerosol scattering (450, 550, 700nm), aerosol absorption (565nm), equivalent BC mass, and air density ratio. The GCMS was responsible for capturing a multitude of compounds in the atmosphere, some of which include CH4, CH3CHO, CH3Br, CH3Cl, CHBr3, and C2H6O. DIAL was used for a variety of measurements, some of which include aerosol wavelength dependence (1064/587nm), IR aerosol scattering ratio (1064nm), tropopause heights and ozone columns, visible aerosol scattering ratio, composite tropospheric ozone cross-sections, and visible aerosol depolarization. Finally, the Dual Channel Collectors and Fluorometers, HPLC collected data on H2O2, CH3OOH, and CH2O in the atmosphere. The P-3B aircraft was equipped with various instruments for TRACE-P, some of which include the MSA/CIMS, the Non-dispersive IR Spectrometer, the PILS-Ion Chromatograph, and the Condensation particle counter and Pulse Height Analysis (PHA). The MSA/CIMS measured OH, H2SO4, MSA, and HNO3. The Non-dispersive IR Spectrometer took measurements on CO2 in the atmosphere. The PILS-Ion Chromatograph recorded measurements of compounds and elements in the atmosphere, including sodium, calcium, potassium, magnesium, chloride, NH4, NO3, and SO4. Finally, the Condensation particle counter and PHA was used to gather data on total UCN, UCN 3-8nm, and UCN 3-4nm. Along with the aircrafts, ground stations measured air quality from China along with C2H2, C2H6, CO, and HCN. Finally, satellites imagery was used to collect a multitude of data, some of the uses were to observe the history of lightning flashes, SeaWiFS cloud imagery, 8-day exposure to TOMS aerosols, and SeaWiFS aerosol optical thickness. The imagery was used to best aid in planning for the aircraft deployment.
TRACE-P P-3B In-Situ Aerosol Data
공공데이터포털
TRACE-P_Aerosol_AircraftInSitu_P3B_Data is the in-situ aerosol data collected onboard the P-3B aircraft during the Transport and Chemical Evolution over the Pacific (TRACE-P) suborbital campaign. Data from the Chemical Ionization Mass Spectrometer (CIMS) and the Differential Absorption of CO, CH4, N2O Measurements (DACOM) instruments are featured in this collection. Data collection for this product is complete. The NASA TRACE-P mission was a part of NASA’s Global Tropospheric Experiment (GTE) – an assemblage of missions conducted from 1983-2001 with various research goals and objectives. TRACE-P was a multi-organizational campaign with NASA, the National Center for Atmospheric Research (NCAR), and several US universities. TRACE-P deployed its payloads in the Pacific between the months of March and April 2001 with the goal of studying the air chemistry emerging from Asia to the western Pacific. Along with this, TRACE-P had the objective studying the chemical evolution of the air as it moved away from Asia.  In order to accomplish its goals, the NASA DC-8 aircraft and NASA P-3B aircraft were deployed, each equipped with various instrumentation. TRACE-P also relied on ground sites, and satellites to collect data. The DC-8 aircraft was equipped with 19 instruments in total while the P-3B boasted 21 total instruments. Some instruments on the DC-8 include the Nephelometer, the GCMS, the Nitric Oxide Chemiluminescence, the Differential Absorption Lidar (DIAL), and the Dual Channel Collectors and Fluorometers, HPLC. The Nephelometer was utilized to gather data on various wavelengths including aerosol scattering (450, 550, 700nm), aerosol absorption (565nm), equivalent BC mass, and air density ratio. The GCMS was responsible for capturing a multitude of compounds in the atmosphere, some of which include CH4, CH3CHO, CH3Br, CH3Cl, CHBr3, and C2H6O. DIAL was used for a variety of measurements, some of which include aerosol wavelength dependence (1064/587nm), IR aerosol scattering ratio (1064nm), tropopause heights and ozone columns, visible aerosol scattering ratio, composite tropospheric ozone cross-sections, and visible aerosol depolarization. Finally, the Dual Channel Collectors and Fluorometers, HPLC collected data on H2O2, CH3OOH, and CH2O in the atmosphere. The P-3B aircraft was equipped with various instruments for TRACE-P, some of which include the MSA/CIMS, the Non-dispersive IR Spectrometer, the PILS-Ion Chromatograph, and the Condensation particle counter and Pulse Height Analysis (PHA). The MSA/CIMS measured OH, H2SO4, MSA, and HNO3. The Non-dispersive IR Spectrometer took measurements on CO2 in the atmosphere. The PILS-Ion Chromatograph recorded measurements of compounds and elements in the atmosphere, including sodium, calcium, potassium, magnesium, chloride, NH4, NO3, and SO4. Finally, the Condensation particle counter and PHA was used to gather data on total UCN, UCN 3-8nm, and UCN 3-4nm. Along with the aircrafts, ground stations measured air quality from China along with C2H2, C2H6, CO, and HCN. Finally, satellites imagery was used to collect a multitude of data, some of the uses were to observe the history of lightning flashes, SeaWiFS cloud imagery, 8-day exposure to TOMS aerosols, and SeaWiFS aerosol optical thickness. The imagery was used to best aid in planning for the aircraft deployment.