데이터셋 상세
미국
Reformatted Navigation from Lake Mead - 1999
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United States. Extensive research has been conducted on Lake Mead, but a majority of the studies have involved determining levels of anthropogenic contaminants such as synthetic organic compounds, heavy metals and dissolved ions, furans/dioxins, and nutrient loading in lake water, sediment, and biota (Preissler, et al., 1998; Bevans et al, 1996; Bevans et al., 1998; Covay and Leiker, 1998; LaBounty and Horn, 1997; Paulson, 1981). By contrast, little work has focused on the sediments in the lake and the processes of deposition (Gould, 1951). To address these questions, sidescan-sonar imagery and high-resolution seismic-reflection profiles were collected throughout Lake Mead by the USGS in cooperation with researchers from University of Nevada Las Vegas (UNLV). These data allow a detailed mapping of the surficial geology and the distribution and thickness of sediment that has accumulated in the lake since the completion of Hoover Dam. Results indicate that the accumulation of post-impoundment sediment is primarily restricted to former river and stream beds that are now submerged below the lake while the margins of the lake appear to be devoid of post-impoundment sediment. The sediment cover along the original Colorado River bed is continuous and is typically greater than 10 m thick through much of its length. Sediment thickness in some areas exceeds 35 m while the smaller tributary valleys typically are filled with less than 4 m of sediment. Away from the river beds that are now covered with post-impoundment sediment, pre-impoundment alluvial deposits and rock outcrops are still exposed on the lake floor.
데이터 정보
연관 데이터
Reformatted Hypack Navigation from Lake Mead - 2001
공공데이터포털
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United States. Extensive research has been conducted on Lake Mead, but a majority of the studies have involved determining levels of anthropogenic contaminants such as synthetic organic compounds, heavy metals and dissolved ions, furans/dioxins, and nutrient loading in lake water, sediment, and biota (Preissler, et al., 1998; Bevans et al, 1996; Bevans et al., 1998; Covay and Leiker, 1998; LaBounty and Horn, 1997; Paulson, 1981). By contrast, little work has focused on the sediments in the lake and the processes of deposition (Gould, 1951). To address these questions, sidescan-sonar imagery and high-resolution seismic-reflection profiles were collected throughout Lake Mead by the USGS in cooperation with researchers from University of Nevada Las Vegas (UNLV). These data allow a detailed mapping of the surficial geology and the distribution and thickness of sediment that has accumulated in the lake since the completion of Hoover Dam. Results indicate that the accumulation of post-impoundment sediment is primarily restricted to former river and stream beds that are now submerged below the lake while the margins of the lake appear to be devoid of post-impoundment sediment. The sediment cover along the original Colorado River bed is continuous and is typically greater than 10 m thick through much of its length. Sediment thickness in some areas exceeds 35 m while the smaller tributary valleys typically are filled with less than 4 m of sediment. Away from the river beds that are now covered with post-impoundment sediment, pre-impoundment alluvial deposits and rock outcrops are still exposed on the lake floor.
Reformatted Hypack Navigation from Lake Mead - 2000
공공데이터포털
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United States. Extensive research has been conducted on Lake Mead, but a majority of the studies have involved determining levels of anthropogenic contaminants such as synthetic organic compounds, heavy metals and dissolved ions, furans/dioxins, and nutrient loading in lake water, sediment, and biota (Preissler, et al., 1998; Bevans et al, 1996; Bevans et al., 1998; Covay and Leiker, 1998; LaBounty and Horn, 1997; Paulson, 1981). By contrast, little work has focused on the sediments in the lake and the processes of deposition (Gould, 1951). To address these questions, sidescan-sonar imagery and high-resolution seismic-reflection profiles were collected throughout Lake Mead by the USGS in cooperation with researchers from University of Nevada Las Vegas (UNLV). These data allow a detailed mapping of the surficial geology and the distribution and thickness of sediment that has accumulated in the lake since the completion of Hoover Dam. Results indicate that the accumulation of post-impoundment sediment is primarily restricted to former river and stream beds that are now submerged below the lake while the margins of the lake appear to be devoid of post-impoundment sediment. The sediment cover along the original Colorado River bed is continuous and is typically greater than 10 m thick through much of its length. Sediment thickness in some areas exceeds 35 m while the smaller tributary valleys typically are filled with less than 4 m of sediment. Away from the river beds that are now covered with post-impoundment sediment, pre-impoundment alluvial deposits and rock outcrops are still exposed on the lake floor.
Reformatted Hypack navigation from Lake Mohave - 2002
공공데이터포털
Lake Mohave is one of several multi-purpose reservoirs that have been constructed on the Colorado River. The lake was formed upon completion of the Davis Dam in 1953. No mapping of the floor of the lake had been conducted since completion of the Davis Dam. The U.S. Geological Survey, in cooperation with researchers from the University of Nevada Las Vegas, completed a geophysical survey of this lake in April 2002. The survey included collection of sidescan sonar imagery of nearly the entire lake floor, and high-resolution seismic-reflection profiles along widely spaced lines throughout the lake. The detailed mapping of the lake floor was used to determine the amount of sediment that had accumulated in the lake since impoundment, its distribution, and the processes of deposition.
Chirp Seismic Survey Tracklines - Lake Mead 1999
공공데이터포털
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United States. Extensive research has been conducted on Lake Mead, but a majority of the studies have involved determining levels of anthropogenic contaminants such as synthetic organic compounds, heavy metals and dissolved ions, furans/dioxins, and nutrient loading in lake water, sediment, and biota (Preissler, et al., 1998; Bevans et al, 1996; Bevans et al., 1998; Covay and Leiker, 1998; LaBounty and Horn, 1997; Paulson, 1981). By contrast, little work has focused on the sediments in the lake and the processes of deposition (Gould, 1951). To address these questions, sidescan-sonar imagery and high-resolution seismic-reflection profiles were collected throughout Lake Mead by the USGS in cooperation with researchers from University of Nevada Las Vegas (UNLV). These data allow a detailed mapping of the surficial geology and the distribution and thickness of sediment that has accumulated in the lake since the completion of Hoover Dam. Results indicate that the accumulation of post-impoundment sediment is primarily restricted to former river and stream beds that are now submerged below the lake while the margins of the lake appear to be devoid of post-impoundment sediment. The sediment cover along the original Colorado River bed is continuous and is typically greater than 10 m thick through much of its length. Sediment thickness in some areas exceeds 35 m while the smaller tributary valleys typically are filled with less than 4 m of sediment. Away from the river beds that are now covered with post-impoundment sediment, pre-impoundment alluvial deposits and rock outcrops are still exposed on the lake floor.
Chirp Seismic Survey Tracklines - Lake Mead 2001
공공데이터포털
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United States. Extensive research has been conducted on Lake Mead, but a majority of the studies have involved determining levels of anthropogenic contaminants such as synthetic organic compounds, heavy metals and dissolved ions, furans/dioxins, and nutrient loading in lake water, sediment, and biota (Preissler, et al., 1998; Bevans et al, 1996; Bevans et al., 1998; Covay and Leiker, 1998; LaBounty and Horn, 1997; Paulson, 1981). By contrast, little work has focused on the sediments in the lake and the processes of deposition (Gould, 1951). To address these questions, sidescan-sonar imagery and high-resolution seismic-reflection profiles were collected throughout Lake Mead by the USGS in cooperation with researchers from University of Nevada Las Vegas (UNLV). These data allow a detailed mapping of the surficial geology and the distribution and thickness of sediment that has accumulated in the lake since the completion of Hoover Dam. Results indicate that the accumulation of post-impoundment sediment is primarily restricted to former river and stream beds that are now submerged below the lake while the margins of the lake appear to be devoid of post-impoundment sediment. The sediment cover along the original Colorado River bed is continuous and is typically greater than 10 m thick through much of its length. Sediment thickness in some areas exceeds 35 m while the smaller tributary valleys typically are filled with less than 4 m of sediment. Away from the river beds that are now covered with post-impoundment sediment, pre-impoundment alluvial deposits and rock outcrops are still exposed on the lake floor.
Shotpoint navigation for Keathley Canyon Multichannel Seismics Survey Collected During USGS Cruise G1-03-GM (03001) - G1CDP NAV KC GEO.SHP
공공데이터포털
The point shapefile contains the shotpoint navigation for the Keathley Canyon multichannel seismic survey collected during USGS cruise G1-03-GM aboard the R/V Gyre in the Gulf of Mexico in May, 2003. The purpose of this cruise was to collect multichannel seismic data in support of USGS and Department of Energy gas hydrate studies. About 786 km of data were collected along 59 lines in and around lease block Keathley Canyon 195.
Boomer Seismic Survey Tracklines - Lake Mead 2001
공공데이터포털
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United States. Extensive research has been conducted on Lake Mead, but a majority of the studies have involved determining levels of anthropogenic contaminants such as synthetic organic compounds, heavy metals and dissolved ions, furans/dioxins, and nutrient loading in lake water, sediment, and biota (Preissler, et al., 1998; Bevans et al, 1996; Bevans et al., 1998; Covay and Leiker, 1998; LaBounty and Horn, 1997; Paulson, 1981). By contrast, little work has focused on the sediments in the lake and the processes of deposition (Gould, 1951). To address these questions, sidescan-sonar imagery and high-resolution seismic-reflection profiles were collected throughout Lake Mead by the USGS in cooperation with researchers from University of Nevada Las Vegas (UNLV). These data allow a detailed mapping of the surficial geology and the distribution and thickness of sediment that has accumulated in the lake since the completion of Hoover Dam. Results indicate that the accumulation of post-impoundment sediment is primarily restricted to former river and stream beds that are now submerged below the lake while the margins of the lake appear to be devoid of post-impoundment sediment. The sediment cover along the original Colorado River bed is continuous and is typically greater than 10 m thick through much of its length. Sediment thickness in some areas exceeds 35 m while the smaller tributary valleys typically are filled with less than 4 m of sediment. Away from the river beds that are now covered with post-impoundment sediment, pre-impoundment alluvial deposits and rock outcrops are still exposed on the lake floor.
Chirp Seismic Survey Tracklines - Lake Mohave 2002
공공데이터포털
Lake Mohave is one of several multi-purpose reservoirs that have been constructed on the Colorado River. The lake was formed upon completion of the Davis Dam in 1953. No mapping of the floor of the lake had been conducted since completion of the Davis Dam. The U.S. Geological Survey, in cooperation with researchers from the University of Nevada Las Vegas, completed a geophysical survey of this lake in April 2002. The survey included collection of sidescan sonar imagery of nearly the entire lake floor, and high-resolution seismic-reflection profiles along widely spaced lines throughout the lake. The detailed mapping of the lake floor was used to determine the amount of sediment that had accumulated in the lake since impoundment, its distribution, and the processes of deposition.
Chirp Seismic Survey Tracklines - Lake Mead 2000
공공데이터포털
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United States. Extensive research has been conducted on Lake Mead, but a majority of the studies have involved determining levels of anthropogenic contaminants such as synthetic organic compounds, heavy metals and dissolved ions, furans/dioxins, and nutrient loading in lake water, sediment, and biota (Preissler, et al., 1998; Bevans et al, 1996; Bevans et al., 1998; Covay and Leiker, 1998; LaBounty and Horn, 1997; Paulson, 1981). By contrast, little work has focused on the sediments in the lake and the processes of deposition (Gould, 1951). To address these questions, sidescan-sonar imagery and high-resolution seismic-reflection profiles were collected throughout Lake Mead by the USGS in cooperation with researchers from University of Nevada Las Vegas (UNLV). These data allow a detailed mapping of the surficial geology and the distribution and thickness of sediment that has accumulated in the lake since the completion of Hoover Dam. Results indicate that the accumulation of post-impoundment sediment is primarily restricted to former river and stream beds that are now submerged below the lake while the margins of the lake appear to be devoid of post-impoundment sediment. The sediment cover along the original Colorado River bed is continuous and is typically greater than 10 m thick through much of its length. Sediment thickness in some areas exceeds 35 m while the smaller tributary valleys typically are filled with less than 4 m of sediment. Away from the river beds that are now covered with post-impoundment sediment, pre-impoundment alluvial deposits and rock outcrops are still exposed on the lake floor.
Sidescan-sonar Tracklines in Geographic Coordinates from Lake Mohave - 2002
공공데이터포털
Lake Mohave is one of several multi-purpose reservoirs that have been constructed on the Colorado River. The lake was formed upon completion of the Davis Dam in 1953. No mapping of the floor of the lake had been conducted since completion of the Davis Dam. The U.S. Geological Survey, in cooperation with researchers from the University of Nevada Las Vegas, completed a geophysical survey of this lake in April 2002. The survey included collection of sidescan sonar imagery of nearly the entire lake floor, and high-resolution seismic-reflection profiles along widely spaced lines throughout the lake. The detailed mapping of the lake floor was used to determine the amount of sediment that had accumulated in the lake since impoundment, its distribution, and the processes of deposition.