데이터셋 상세
미국
SEAC4RS DC-8 Aircraft In-Situ Cloud Data
SEAC4RS_Cloud_AircraftInSitu_DC8_Data are in-situ cloud data collected onboard the DC8 aircraft during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEA4CRS) airborne field study. Data collection for this product is complete.Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) airborne field study was conducted in August and September of 2013. The field operation was based in Houston, Texas. The primary SEAC4RS science objectives are: to determine how pollutant emissions are redistributed via deep convection throughout the troposphere; to determine the evolution of gases and aerosols in deep convective outflow and the implications for UT/LS chemistry; to identify the influences and feedbacks of aerosol particles from anthropogenic pollution and biomass burning on meteorology and climate through changes in the atmospheric heat budget (i.e., semi-direct effect) or through microphysical changes in clouds (i.e., indirect effects); and lastly, to serve as a calibration and validation test bed for future satellite instruments and missions.The airborne observational data were collected from three aircraft platforms: the NASA DC-8, ER-2, and SPEC LearJet. Both the NASA DC-8 and ER-2 aircraft were instrumented for comprehensive in-situ and remote sensing measurements of the trace gas, aerosol properties, and cloud properties. In addition, radiative fluxes and meteorological parameters were also recorded. The NASA DC-8 was mostly responsible for tropospheric sampling, while the NASA ER-2 was operating in the lower stratospheric regime. The SPEC LearJet was dedicated to in-situ cloud characterizations. To accomplish the science objectives, the flight plans were designed to investigate the influence of biomass burning and pollution, their temporal evolution, and ultimately, impacts on meteorological processes which can, in turn, feedback on regional air quality. With respect to meteorological feedbacks, the opportunity to examine the impact of polluting aerosols on cloud properties and dynamics was of particular interest.
연관 데이터
SEAC4RS Learjet Aircraft In-Situ Cloud Data
공공데이터포털
SEAC4RS_Cloud_AircraftInSitu_Learjet_Data are in-situ cloud data collected onboard the Learjet aircraft during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEA4CRS) airborne field study. Data collection for this product is complete.Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) airborne field study was conducted in August and September of 2013. The field operation was based in Houston, Texas. The primary SEAC4RS science objectives are: to determine how pollutant emissions are redistributed via deep convection throughout the troposphere; to determine the evolution of gases and aerosols in deep convective outflow and the implications for UT/LS chemistry; to identify the influences and feedbacks of aerosol particles from anthropogenic pollution and biomass burning on meteorology and climate through changes in the atmospheric heat budget (i.e., semi-direct effect) or through microphysical changes in clouds (i.e., indirect effects); and lastly, to serve as a calibration and validation test bed for future satellite instruments and missions.The airborne observational data were collected from three aircraft platforms: the NASA DC-8, ER-2, and SPEC LearJet. Both the NASA DC-8 and ER-2 aircraft were instrumented for comprehensive in-situ and remote sensing measurements of the trace gas, aerosol properties, and cloud properties. In addition, radiative fluxes and meteorological parameters were also recorded. The NASA DC-8 was mostly responsible for tropospheric sampling, while the NASA ER-2 was operating in the lower stratospheric regime. The SPEC LearJet was dedicated to in-situ cloud characterizations. To accomplish the science objectives, the flight plans were designed to investigate the influence of biomass burning and pollution, their temporal evolution, and ultimately, impacts on meteorological processes which can, in turn, feedback on regional air quality. With respect to meteorological feedbacks, the opportunity to examine the impact of polluting aerosols on cloud properties and dynamics was of particular interest.
SEAC4RS DC-8 Aircraft In-Situ Aerosol Data
공공데이터포털
SEAC4RS_Aerosol_AircraftInSitu_DC8_Data are in-situ aerosol data collected onboard the DC8 aircraft during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEA4CRS) airborne field study. Data collection for this product is complete.Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) airborne field study was conducted in August and September of 2013. The field operation was based in Houston, Texas. The primary SEAC4RS science objectives are: to determine how pollutant emissions are redistributed via deep convection throughout the troposphere; to determine the evolution of gases and aerosols in deep convective outflow and the implications for UT/LS chemistry; to identify the influences and feedbacks of aerosol particles from anthropogenic pollution and biomass burning on meteorology and climate through changes in the atmospheric heat budget (i.e., semi-direct effect) or through microphysical changes in clouds (i.e., indirect effects); and lastly, to serve as a calibration and validation test bed for future satellite instruments and missions.The airborne observational data were collected from three aircraft platforms: the NASA DC-8, ER-2, and SPEC LearJet. Both the NASA DC-8 and ER-2 aircraft were instrumented for comprehensive in-situ and remote sensing measurements of the trace gas, aerosol properties, and cloud properties. In addition, radiative fluxes and meteorological parameters were also recorded. The NASA DC-8 was mostly responsible for tropospheric sampling, while the NASA ER-2 was operating in the lower stratospheric regime. The SPEC LearJet was dedicated to in-situ cloud characterizations. To accomplish the science objectives, the flight plans were designed to investigate the influence of biomass burning and pollution, their temporal evolution, and ultimately, impacts on meteorological processes which can, in turn, feedback on regional air quality. With respect to meteorological feedbacks, the opportunity to examine the impact of polluting aerosols on cloud properties and dynamics was of particular interest.
ARCTAS DC-8 Aircraft In-situ Cloud Data
공공데이터포털
ARCTAS_Cloud_AircraftInSitu_DC8_Data is the in-situ cloud data for the DC-8 aircraft collected during the Arctic Research of the Composition of the Troposphere from Aircraft & Satellites sub-orbital campaign. Data from the CAPS instrument is featured in this data product and data collection for this product is complete.The Arctic is a critical region in understanding climate change. The responses of the Arctic to environmental perturbations such as warming, pollution, and emissions from forest fires in boreal Eurasia and North America include key processes such as the melting of ice sheets and permafrost, a decrease in snow albedo, and the deposition of halogen radical chemistry from sea salt aerosols to ice. Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) was a field campaign that explored environmental processes related to the high degree of climate sensitivity in the Arctic. ARCTAS was part of NASA’s contribution to the International Global Atmospheric Chemistry (IGAC) Polar Study using Aircraft, Remote Sensing, Surface Measurements, and Models of Climate, Chemistry, Aerosols, and Transport (POLARCAT) Experiment for the International Polar Year 2007-2008.ARCTAS had four primary objectives. The first was to understand long-range transport of pollution to the Arctic. Pollution brought to the Arctic from northern mid-latitude continents has environmental consequences, such as modifying regional and global climate and affecting the ozone budget. Prior to ARCTAS, these pathways remained largely uncertain. The second objective was to understand the atmospheric composition and climate implications of boreal forest fires; the smoke emissions from which act as an atmospheric perturbation to the Arctic by impacting the radiation budget and cloud processes and contributing to the production of tropospheric ozone. The third objective was to understand aerosol radiative forcing from climate perturbations, as the Arctic is an important place for understanding radiative forcing due to the rapid pace of climate change in the region and its unique radiative environment. The fourth objective of ARCTAS was to understand chemical processes with a focus on ozone, aerosols, mercury, and halogens. Additionally, ARCTAS sought to develop capabilities for incorporating data from aircraft and satellites related to pollution and related environmental perturbations in the Arctic into earth science models, expanding the potential for those models to predict future environmental change.ARCTAS consisted of two, three-week aircraft deployments conducted in April and July 2008. The spring deployment sought to explore arctic haze, stratosphere-troposphere exchange, and sunrise photochemistry. April was chosen for the deployment phase due to historically being the peak in the seasonal accumulation of pollution from northern mid-latitude continents in the Arctic. The summer deployment sought to understand boreal forest fires at their most active seasonal phase in addition to stratosphere-troposphere exchange and summertime photochemistry.During ARCTAS, three NASA aircrafts, the DC-8, P-3B, and BE-200, conducted measurements and were equipped with suites of in-situ and remote sensing instrumentation. Airborne data was used in conjunction with satellite observations from AURA, AQUA, CloudSat, PARASOL, CALIPSO, and MISR.The ASDC houses ARCTAS aircraft data, along with data related to MISR, a satellite instrument aboard the Terra satellite which provides measurements that provide information about the Earth’s environment and climate.
SEAC4RS DC-8 Aircraft In-Situ Meteorological and Navigational Data
공공데이터포털
SEAC4RS_MetNav_AircraftInSitu_DC8_Data are in-situ meteorological and navigation data collected onboard the DC8 aircraft during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEA4CRS) airborne field study. Data collection for this product is complete.Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) airborne field study was conducted in August and September of 2013. The field operation was based in Houston, Texas. The primary SEAC4RS science objectives are: to determine how pollutant emissions are redistributed via deep convection throughout the troposphere; to determine the evolution of gases and aerosols in deep convective outflow and the implications for UT/LS chemistry; to identify the influences and feedbacks of aerosol particles from anthropogenic pollution and biomass burning on meteorology and climate through changes in the atmospheric heat budget (i.e., semi-direct effect) or through microphysical changes in clouds (i.e., indirect effects); and lastly, to serve as a calibration and validation test bed for future satellite instruments and missions.The airborne observational data were collected from three aircraft platforms: the NASA DC-8, ER-2, and SPEC LearJet. Both the NASA DC-8 and ER-2 aircraft were instrumented for comprehensive in-situ and remote sensing measurements of the trace gas, aerosol properties, and cloud properties. In addition, radiative fluxes and meteorological parameters were also recorded. The NASA DC-8 was mostly responsible for tropospheric sampling, while the NASA ER-2 was operating in the lower stratospheric regime. The SPEC LearJet was dedicated to in-situ cloud characterizations. To accomplish the science objectives, the flight plans were designed to investigate the influence of biomass burning and pollution, their temporal evolution, and ultimately, impacts on meteorological processes which can, in turn, feedback on regional air quality. With respect to meteorological feedbacks, the opportunity to examine the impact of polluting aerosols on cloud properties and dynamics was of particular interest.
SEAC4RS ER-2 Aircraft In-Situ Cloud Data
공공데이터포털
SEAC4RS_Cloud_AircraftInSitu_ER2_Data are in-situ trace gas data collected onboard the ER-2 aircraft during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEA4CRS) airborne field study. Data collection for this product is complete.Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) airborne field study was conducted in August and September of 2013. The field operation was based in Houston, Texas. The primary SEAC4RS science objectives are: to determine how pollutant emissions are redistributed via deep convection throughout the troposphere; to determine the evolution of gases and aerosols in deep convective outflow and the implications for UT/LS chemistry; to identify the influences and feedbacks of aerosol particles from anthropogenic pollution and biomass burning on meteorology and climate through changes in the atmospheric heat budget (i.e., semi-direct effect) or through microphysical changes in clouds (i.e., indirect effects); and lastly, to serve as a calibration and validation test bed for future satellite instruments and missions.The airborne observational data were collected from three aircraft platforms: the NASA DC-8, ER-2, and SPEC LearJet. Both the NASA DC-8 and ER-2 aircraft were instrumented for comprehensive in-situ and remote sensing measurements of the trace gas, aerosol properties, and cloud properties. In addition, radiative fluxes and meteorological parameters were also recorded. The NASA DC-8 was mostly responsible for tropospheric sampling, while the NASA ER-2 was operating in the lower stratospheric regime. The SPEC LearJet was dedicated to in-situ cloud characterizations. To accomplish the science objectives, the flight plans were designed to investigate the influence of biomass burning and pollution, their temporal evolution, and ultimately, impacts on meteorological processes which can, in turn, feedback on regional air quality. With respect to meteorological feedbacks, the opportunity to examine the impact of polluting aerosols on cloud properties and dynamics was of particular interest.
SEAC4RS DC-8 Aircraft Miscellaneous Data
공공데이터포털
SEAC4RS_Miscellaneous_AircraftInSitu_DC8_Data are miscellaneous ancillary data collected onboard the DC8 aircraft during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEA4CRS) airborne field study. Data from the Goddard Earth Observing System Model (GEOS-5) are featured in this product. Data collection for this product is complete.Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) airborne field study was conducted in August and September of 2013. The field operation was based in Houston, Texas. The primary SEAC4RS science objectives are: to determine how pollutant emissions are redistributed via deep convection throughout the troposphere; to determine the evolution of gases and aerosols in deep convective outflow and the implications for UT/LS chemistry; to identify the influences and feedbacks of aerosol particles from anthropogenic pollution and biomass burning on meteorology and climate through changes in the atmospheric heat budget (i.e., semi-direct effect) or through microphysical changes in clouds (i.e., indirect effects); and lastly, to serve as a calibration and validation test bed for future satellite instruments and missions.The airborne observational data were collected from three aircraft platforms: the NASA DC-8, ER-2, and SPEC LearJet. Both the NASA DC-8 and ER-2 aircraft were instrumented for comprehensive in-situ and remote sensing measurements of the trace gas, aerosol properties, and cloud properties. In addition, radiative fluxes and meteorological parameters were also recorded. The NASA DC-8 was mostly responsible for tropospheric sampling, while the NASA ER-2 was operating in the lower stratospheric regime. The SPEC LearJet was dedicated to in-situ cloud characterizations. To accomplish the science objectives, the flight plans were designed to investigate the influence of biomass burning and pollution, their temporal evolution, and ultimately, impacts on meteorological processes which can, in turn, feedback on regional air quality. With respect to meteorological feedbacks, the opportunity to examine the impact of polluting aerosols on cloud properties and dynamics was of particular interest.