Sediments of Boston Harbor acquired in 1968 (MENCHER shapefile)
공공데이터포털
A study was made of the composition, grain-size distribution, and organic content of grab samples collected from Boston Harbor. In general, the coarsest mean sizes occur in the channels scoured by dredging or tidal action, and the finest in areas where no dredging has occurred and where tidal velocities are at a minimum.
Sediments of Narragansett Bay acquired in 1960 (MCMASTER60 shapefile)
공공데이터포털
Gravel, sand, silt, and clay contents were determined for samples from Narragansett Bay and the adjacent Rhode Island Shelf. In the Narragansett Bay system, clayey silt and sand-silt-clay are the most abundant sediments. Sand is abundant locally and on the inner shelf. In general, toward the lower passages of the Bay the sediments show a progressive change to coarser textures.
Sediments of Cape Cod Bay, Massachusetts (HOUGH42 shapefile)
공공데이터포털
Cape Cod Bay, lying on the Massachusetts coast partly enclosed by Cape Cod, is in a glaciated region of low relief. Coarse sediments generally occur in areas exposed to wave and current action as in shallow water near shore or on shoals, and in the deep channel north of the tip of Cape Cod, which is swept by tidal currents. Fine sediments are restricted to the deeper water in the central portion of the Bay, and to the small well-protected embayments of the shore. Although Hough (1942) is available as part of the NGDC Deck 41 Database, additional data from the original report were manually entered and, therefore, this file is unque.
15CCT02 metadata: Sedimentary Data From Grand Bay, Alabama/Mississippi, 2014-2016
공공데이터포털
This data release is an archive of sedimentary field and laboratory analytical data collected in Grand Bay, Alabama/Mississippi from 2014-2016 by scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS SPCMSC). This work, a component of the SPCMSC’s Sea-level and Storm Impacts on Estuarine Environments and Shorelines (SSIEES) project, provides the necessary data to quantify sedimentation rates and sediment sources for the marsh and estuary. The SSIEES project objective is to evaluate the exchange of sediment material between the marsh and estuary due to extreme storms and sea-level rise. Micropaleontological data from select cores and surface samples are available in Haller and others (2018, https://doi.org/10.5066/F7MC8X5F, https://doi.org/10.5066/F7445KSG). Single-beam bathymetry of Grand Bay proper and multi-beam bathymetry of several marsh-edge eroding shorelines are reported in Dewitt and others (2017, https://doi.org/10.3133/ds1070) and Stalk and others (2018, https://doi.org/10.5066/F7MC8Z9N), respectively. Subbottom and sidescan sonar data for Grand Bay proper are reported in Locker and others (2018, https://doi.org/10.5066/P9374DKQ). This publication includes data for the sediment cores and surface sediments taken in Grand Bay marsh and estuary during five sampling periods of this study, which were designated as USGS Field Activity Numbers (FAN) 2014-323-FA (project ID 14CCT01), 2015-315-FA (project ID 15CCT02), 2016-331-FA (project ID 16CCT03), 2016-348-FA (project ID 16CCT04), and 2016-358-FA (project ID 16CCT07). Data products include: GPS-derived site locations and elevations; core photographs,logs, and x-radiographs; lithologic, radiochemical, elemental composition, stable isotopic composition, and radiocarbon data; and Federal Geographic Data Committee (FGDC) metadata.