데이터셋 상세
미국
SHELA-SDSS Stripe 82 Catalog
The Spitzer/HETDEX Exploratory Large-Area (SHELA) survey covers ~24 sq. deg at 3.6 and 4.5 microns. The survey area falls within the footprints of the Sloan Digital Sky Survey "Stripe 82" region, the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX), and the Dark Energy Survey. The images and catalogs are 80% (50%) complete to limiting magnitudes of 22.0 (22.6) AB mag in the detection image, which is constructed from the weighted sum of the IRAC 3.6 and 4.5 micron images. The catalogs reach limiting sensitivities of 1.1 microJy at both 3.6 and 4.5 microns (1#, for R = 2" circular apertures).
데이터 정보
연관 데이터
H-ATLAS Catalog
공공데이터포털
The Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) is a survey of 600 deg^2 in five photometric bands - 100, 160, 250, 350 and 500 microns - with the Photoconductor Array Camera and Spectrometer (PACS) and Spectral and Photometric Imaging Receiver (SPIRE) cameras. H-ATLAS DR1 includes the survey of three fields on the celestial equator, covering a total area of 161.6 deg^2 and previously observed in the Galaxy and Mass Assembly (GAMA) spectroscopic survey. The data release main catalogue (HATLAS_DR1_CATALOGUE.FITS) contains only the 'best' candidate ID to each SPIRE source (where available). Most users will find in this catalogue everything they will need for their science purposes. A second catalogue is also available (HATLAS_DR1_CATALOGUE_ALLIDS.FITS), which contains all possible counterparts within the search radius of each SPIRE source, and provides the full LR statistics so that these may be independently analysed as the user wishes. To select only sources which have reliable optical IDs, a cut of Reliability#0.8 is recommended, although other cuts on Reliability or LR may be suitable for different purposes as discussed in Bourne et al. (2016).
Spitzer Wide-area InfraRed Extragalactic Survey ELAIS-S1 MIPS 70 micron Catalog
공공데이터포털
The Spitzer Wide-area InfraRed Extragalactic survey (SWIRE), the largest Spitzer Legacy program, is a wide-area, imaging survey to trace the evolution of dusty, star-forming galaxies, evolved stellar populations, and AGN as a function of environment, from redshifts z~3 to the current epoch. SWIRE surveys 6 high-latitude fields, totaling ~50 sq. deg. in all 7 Spitzer bands: 3.6, 4.5, 5.8, and 8 microns with IRAC and 24, 70, and 160 microns with MIPS (Lonsdale et al. 2003). The SWIRE Legacy Extragalactic Source Catalogs will eventually contain in excess of 2 million IR-selected galaxies, from those dominated by the light of stellar populations detected primarily by IRAC, to starbursts, ultra-luminous infrared galaxies and AGN detected also by MIPS.
Sloan Digital Sky Survey Stripe 82 Chandra Source Match Catalog
공공데이터포털
This table contains some of the data from the latest release of the Stripe 82 X-ray (82X) survey point-source catalog, which currently covers 31.3 deg2 of the Sloan Digital Sky Survey (SDSS) Stripe 82 Legacy field. In total, 6,181 unique X-ray sources are significantly detected with XMM-Newton (> 5 sigma) and Chandra (> 4.5 sigma). This 31 deg2 catalog release includes data from XMM-Newton cycle AO 13, which approximately doubled the Stripe 82X survey area. The flux limits of the Stripe 82X survey are 8.7 x 10-16 erg s-1 cm-2, 4.7 x 10-15 erg s-1 cm-2, and 2.1 x 10-15 erg s-1 cm^=2^ in the soft (0.5 - 2.0 keV), hard (2 - 10 keV), and full (0.5 - 10 keV) bands, respectively, with approximate half-area survey flux limits of 5.4 x 10-15 erg s-1 cm-2, 2.9 x 10-14 erg s-1 cm-2, and 1.7 x 10-14 erg s-1 cm-2, respectively. The authors matched the X-ray source lists to available multi-wavelength catalogs, including updated matches to the previous release of the Stripe 82X survey; 88% of the sample is matched to a multi-wavelength counterpart. Due to the wide area of Stripe 82X and rich ancillary multi-wavelength data, including coadded SDSS photometry, mid-infrared WISE coverage, near-infrared coverage from UKIDSS and VISTA Hemisphere Survey (VHS), ultraviolet coverage from GALEX, radio coverage from FIRST, and far-infrared coverage from Herschel, as well as existing ~30% optical spectroscopic completeness, this study is beginning to uncover rare objects, such as obscured high-luminosity active galactic nuclei at high redshift. The Stripe 82X point source catalog is a valuable data set for constraining how this population grows and evolves, as well as for studying how they interact with the galaxies in which they live. The authors derive the XMM-Newton number counts distribution and compare it with their previously reported Chandra log N - log S relations and other X-ray surveys. Throughout this study, the authors adopt a cosmology of H0 = 70 km s-1 Mpc-1, OmegaM = 0.27, and Lambda = 0.73. The XMM-Newton and Chandra X-ray sources were matched with sources in the SDSS, WISE, UKIDSS, VHS, GALEX, FIRST and Herschel databases using the maximum likelihood estimator (MLE) method, as discussed in detail in Section 4 of the reference paper. This table contains the list of 1,146 Chandra sources detected in the SDSS Stripe 82. A related table SDSSS82XMM contains the list of 5,220 XMM-Newton sources detected in the SDSS Stripe 82. This table was initially created by the HEASARC in April 2014 based on the machine-readable version of the table ('Properties of SDSS Quasars Detected by Chandra') described in Appendix B1 of the reference paper (LaMassa et al. 2013, MNRAS, 436, 3581) which was obtained from the CDS (their catalog J/MNRAS/436/3581/ file chands82.dat). The present version was created by the HEASARC in January 2017 based on CDS Catalog J/ApJ/817/172 file chandra.dat. This is a service provided by NASA HEASARC .
Small Magellanic Cloud XMM-Newton Point Source Catalog
공공데이터포털
The XMM-Newton survey of the Small Magellanic Cloud (SMC) yielded complete coverage of the bar and eastern wing in the 0.2-12.0 keV energy band. In addition to the main-field (5.58 deg2), available outer fields were included in the catalogue, yielding a total field area of 6.32 deg2. This catalog comprises 3,053 unique X-ray point sources and sources with moderate extent that have been reduced from 5,236 individual detections found in 100 observations between April 2000 and April 2010 (the details of these exposures are given in Table B.1 of the reference paper). For 927 sources, there were detections at multiple epochs, with some SMC fields observed up to 36 times. The detected sources have a median position uncertainty of 1.3 arcseconds (1 sigma) and limiting fluxes down to ~1 x 10-14 erg/s/cm2 in the 0.2-4.5 keV band, corresponding to X-ray luminosities of ~5 x 1033 erg/s for sources located in the SMC. Sources have been classified using X-ray hardness ratios, X-ray variability, and their multi-wavelength properties. In their paper, the authors discuss the statistical properties of the detected X-ray sources, like the spatial distribution, X-ray color diagrams, luminosity functions, and time variability. They have identified 49 SMC high-mass X-ray binaries (HMXB), four super-soft X-ray sources (SSS), 34 foreground stars, and 72 active galactic nuclei (AGN) behind the SMC. In addition, they found candidates for SMC HMXBs (45) and faint SSSs (8) as well as AGN (2092) and galaxy clusters (13). Notice that X-ray sources with high extent (>40 arcseconds), e.g. supernova remnants and galaxy clusters, have been previously presented by Haberl et al. (2012, A&A, 545, A128) and are not included in this table. To investigate the spectral behavior of all sources, the authors used hardness ratios HRi (i = 1, 2, 3, 4), defined by HRi = (Ri+1 - Ri)/(Ri+1 + Ri), where Ri is the count rate in energy band i as defined by:
 Band Energy Range 1 0.2-0.5 keV 2 0.5-1.0 keV 3 1.0-2.0 keV 4 2.0-4.5 keV 5 4.5-12. keV 
To increase statistics, the authors also calculated average HR_is, combining all available instruments and observations. HRi is not given if both rates Ri and Ri+1 are null or if the 1-sigma uncertainty of Delta(HRi) covers the complete HR interval from -1 to +1. To convert an individual count rate Ri of an energy band i into a setup-independent, observed flux Fi, the authors calculated energy conversion factors (ECFs) fi = Ri/Fi , as described in Sect. A.3 of the reference paper. For the calculation, they assumed a universal spectrum for all sources, described by a power-law model with a photon index of 1.7 and a photo-electric foreground absorption by the Galaxy of NH,Gal = 6 x 1020 cm-2 (average for the SMC main field in the H I map of Dickey & Lockman 1990, ARAA, 28, 215). In addition to the fluxes for each detection, the authors calculated flux upper limits FUL for each observation and source, if the source was observed but not detected in an individual observation. As for the initial source detection, they used the emldetect task to fit sources, but kept the source positions fixed at the master positions and accepted all detection likelihoods in order to get an upper limit for the flux. This table was created by the HEASARC in October 2013 based on
CDS Catalog J/A+A/558/A3 file smc_src.dat. This is a service provided by NASA HEASARC .
Spitzer Wide-area InfraRed Extragalactic Survey ELAIS-N2 MIPS24 Single-Band Catalog
공공데이터포털
The Spitzer Wide-area InfraRed Extragalactic survey (SWIRE), the largest Spitzer Legacy program, is a wide-area, imaging survey to trace the evolution of dusty, star-forming galaxies, evolved stellar populations, and AGN as a function of environment, from redshifts z~3 to the current epoch. SWIRE surveys 6 high-latitude fields, totaling ~50 sq. deg. in all 7 Spitzer bands: 3.6, 4.5, 5.8, and 8 microns with IRAC and 24, 70, and 160 microns with MIPS (Lonsdale et al. 2003). The SWIRE Legacy Extragalactic Source Catalogs will eventually contain in excess of 2 million IR-selected galaxies, from those dominated by the light of stellar populations detected primarily by IRAC, to starbursts, ultra-luminous infrared galaxies and AGN detected also by MIPS.The main SWIRE catalogs for 24 micron data are the Optical-IRAC-MIPS24 bandmerged catalogs. The bandmerged catalogs require a detection in the shortest IRAC band (3.6 microns). The SWIRE project has produced single-band 24 micron catalogs to cover regions that lie outside the IRAC images, and to include sources that for some reason were not associated with a 3.6 micron detection.
Spitzer Wide-area InfraRed Extragalactic Survey ELAIS-S1 MIPS24 Single-Band Catalog
공공데이터포털
The Spitzer Wide-area InfraRed Extragalactic survey (SWIRE), the largest Spitzer Legacy program, is a wide-area, imaging survey to trace the evolution of dusty, star-forming galaxies, evolved stellar populations, and AGN as a function of environment, from redshifts z~3 to the current epoch. SWIRE surveys 6 high-latitude fields, totaling ~50 sq. deg. in all 7 Spitzer bands: 3.6, 4.5, 5.8, and 8 microns with IRAC and 24, 70, and 160 microns with MIPS (Lonsdale et al. 2003). The SWIRE Legacy Extragalactic Source Catalogs will eventually contain in excess of 2 million IR-selected galaxies, from those dominated by the light of stellar populations detected primarily by IRAC, to starbursts, ultra-luminous infrared galaxies and AGN detected also by MIPS.The main SWIRE catalogs for 24 micron data are the Optical-IRAC-MIPS24 bandmerged catalogs. The bandmerged catalogs require a detection in the shortest IRAC band (3.6 microns). The SWIRE project has produced single-band 24 micron catalogs to cover regions that lie outside the IRAC images, and to include sources that for some reason were not associated with a 3.6 micron detection.
Point Sources from a Spitzer/IRAC Survey of the Galactic Center
공공데이터포털
Spitzer/IRAC observations of the central 2.0 deg by 1.4 deg (~ 280 pc by 200 pc) of the Galaxy were obtained at 3.6-8.0 microns in Cycle 1 (GO 3677, PI: Stolovy). These data represent the highest spatial resolution (~2 arcsec) and sensitivity uniform large-scale map made to date of the Galactic Center at mid-infrared wavelengths.A point source catalog of 1,065,565 objects was obtained. The catalog includes magnitudes for the point sources at 3.6, 4.5, 5.8, and 8.0 microns, as well as JHK photometry from 2MASS. The point source catalog is confusion limited with average limits of 12.4, 12.1, 11.7, and 11.2 magnitudes for [3.6], [4.5], [5.8], and [8.0], respectively. The confusion limits are spatially variable because of stellar surface density, background surface brightness level, and extinction variations across the survey region. More details about the point source catalog can be found at Ramirez et al. 2008.
Spitzer Archival Far-Infrared Extragalactic Survey (SAFIRES) MIPS 70 micron Catalog
공공데이터포털
The Spitzer Archival FIR Extragalactic Survey (SAFIRES) is an offshoot of the Spitzer Space Telescope Enhanced Imaging Products (SEIP). SAFIRES applies the SEIP project's methods to the remaining two MIPS bands, located at far-infrared wavelengths of 70 and 160 microns. Due to the complexity of far-infrared observations, these bands require an expansion of SEIP's standard pipeline through the addition of reprocessing tools. These additional steps are required to remove obvious artifacts before extracting useful measurements. As a result, these bands were not included in the SEIP project, but were later funded through an additional NASA Astrophysics Data Analysis Program (ADAP) grant. To ensure high reliability, the SAFIRES sample includes no fields near the Galactic disk; these observations comprised more than half of the area observed by Spitzer, but the practical drawbacks of Galactic contamination would inhibit the ability to maintain the level of reliability desired in the SAFIRES products. As with SEIP, the SAFIRES source lists contains no extended sources. The remaining sample comprises nearly 1132 fields spanning almost 180 square degrees of sky.
Spitzer South Ecliptic Pole MIPS 24 micron Point Source Catalog
공공데이터포털
The Spitzer/MIPS 24 and 70 μm imaging of an 11.5 square degree region near the South Ecliptic Pole (SEP) has been carried out in order to complement sub-millimeter wavelength observations (250-500 μm) of the same region of sky taken with the Balloon-borne Large Aperture Sub-millimeter Telescope (BLAST), with the goal of better characterizing the nature of sub-millimeter selected galaxies and their role in galaxy evolution. This field has also been extensively mapped at other wavelengths, and will be imaged from 100-500 μm as part of the Herschel Multi-tiered Extragalactic Survey (HerMES). Source detection and photometry were performed using the APEX software within the MOPEX package. Source candidates with S/N > 5 and reduced chi-squared values less than or equal to three (97% of the sources) are considered reliable detections. The remaining source candidates were then inspected (see Scott et al. 2010 for details) and false positives were removed from the catalog. Some sources in the catalog are flagged as possible false positives; see the status field.
Spitzer Deep Wide-Field Survey 8 micron Epoch 1 Catalog
공공데이터포털
The Spitzer Deep, Wide-Field Survey (SDWFS) is a four-epoch infrared survey of 10 square degrees in the Boötes field of the NOAO Deep Wide-Field Survey using the IRAC instrument on the Spitzer Space Telescope. SDWFS, a Spitzer Cycle 4 Legacy project, occupies a unique position in the area-depth survey space defined by other Spitzer surveys. The four epochs that make up SDWFS permit - for the first time - the selection of infrared-variable and high proper motion objects over a wide field on timescales of years. Because of its large survey volume, SDWFS is sensitive to galaxies out to z ~ 3 with relatively little impact from cosmic variance for all but the richest systems. The SDWFS data sets will thus be especially useful for characterizing galaxy evolution beyond z ~ 1.5.The delivery consists of four band-matched catalogs for each of the four epochs and for the total SDWFS coadd data, a total of 20 catalogs. Vega magnitudes are reported for each IRAC band: 3.6, 4.5, 5.8, and 8 microns. Each source was measured three ways: 4 arcsec diameter aperture, 6 arcsec diameter aperture, and Kron radius aperture (MAG_AUTO in SExtractor). Source coordinates correspond to 2MASS catalog positions to within 0.2 arcsec. The tabulated uncertainties are twice the SExtractor (statistical only) uncertainties as an attempt to account for systematic uncertainties.