Horizontal-to-Vertical Spectral Ratio Soundings and Depth-to-Bedrock Data for Geohydrology and Water Quality Investigation of the Unconsolidated Aquifers in the Enfield Creek Valley, Town of Enfield, Tompkins County, New York, April 2013 - August 2015
공공데이터포털
From April 2013 to August 2015, the U.S. Geological Survey, in cooperation with the Town of Enfield and the Tompkins County Planning Department, collected horizontal-to-vertical seismic soundings at 69 locations in the Enfield Creek valley to help determine thickness of the unconsolidated deposits and depth to bedrock. The HVSR technique, commonly referred to as the passive-seismic method, is used to estimate the thickness of unconsolidated sediments and the depth to bedrock (Lane and others, 2008). The passive-seismic method uses a single, broad-band three-component (two horizontal and one vertical) seismometer to record ambient seismic noise. In areas that have a strong acoustic contrast between the bedrock and overlying sediments, the seismic noise induces resonance at frequencies that range from about 0.3 to 40 Hz. The ratio of the average horizontal-to-vertical spectrums produces a spectral-ratio curve with peaks at fundamental and higher-order resonance frequencies. The spectral ratio curve (the ratio of the averaged horizontal-to-vertical component spectrums) is used to determine the fundamental resonance frequency that can be used along with an average shear-wave velocity or a power-law regression equation to estimate sediment thickness and depth to bedrock (Lane and others, 2008; Brown and others, 2013; Fairchild and others, 2013; Chandler and others, 2014; and Johnson and Lane, 2016). The HVSR data presented in this data release were collected at each site for 30 minutes using a Tromino Model TEP-3C three-component seismometer. The data were processed with Grilla 2012 version. 6.2 software to 1) remove anthropogenic noise, 2) convert the time-domain data to frequency domain, 3) compute and plot the spectral ratio curve, and 4) determine the resonance frequency. This data release presents the resonance frequency peaks identified from the HVSR measurements. Also presented are reported depth-to-bedrock data for wells located at or near HVSR data-collection sites in the Town of Enfield for use in comparison of HVSR forward model depths to reported well depths. Raw and processed HVSR data for each HVSR measurement are presented in the attached. The HVSR data-collection sites are designated by a county sequential numbering system (TMHVSR79, TMHVSR80, etc. where TM indicates Tompkins County). References Brown, C.J., Voytek, E.B., Lane, J.W., Jr., and Stone, J.R., 2013, Mapping bedrock surface contours using the horizontal-to-vertical spectral ratio (HVSR) method near the middle quarter area, Woodbury, Connecticut: U.S. Geological Survey Open-File Report 2013–1028, 4 p., available at http://pubs.usgs.gov/of/2013/1028. Chandler, V. W., and Lively, R. S., 2014, Evaluation of the horizontal-to-vertical spectral ratio (HVSR) passive seismic method for estimating the thickness of Quaternary deposits in Minnesota and adjacent parts of Wisconsin: Minnesota Geological Survey Open File Report 14-01, 52 p. Fairchild, G.M., Lane, J.W., Jr., Voytek, E.B., and LeBlanc, D.R., 2013, Bedrock topography of western Cape Cod, Massachusetts, based on bedrock altitudes from geologic borings and analysis of ambient seismic noise by the horizontal-to-vertical spectral-ratio method: U.S. Geological Survey Scientific Investigations Map 3233, 1 sheet, maps variously scaled, 17-p. pamphlet, on one CD–ROM. (Also available at http://pubs.usgs.gov/sim/3233.) Johnson, C. D. and Lane, J. W., 2016, Statistical comparison of methods for estimating sediment thickness from horizontal-to-vertical spectral ratio (HVSR) seismic methods: An example from Tylerville, Connecticut, USA, in Symposium on the Application of Geophysics to Engineering and Environmental Problems Proceedings: Denver, Colorado, Environmental and Engineering Geophysical Society, pp. 317-323. https://doi.org/10.4133/SAGEEP.29-057. Lane, J.W., Jr., White, E.A., Steele, G.V., and Cannia, J.C., 2008, Estimation of bedrock depth using the horizontal-to-vertical (H/V) ambient-noise seismic method,
Geospatial Datasets for the Geohydrology and Water Quality of the Unconsolidated Aquifers in the Enfield Creek Valley, Town of Enfield, Tompkins County, New York
공공데이터포털
From 2013 to 2018, the U.S. Geological Survey, in cooperation with the Town of Enfield and the Tompkins County Planning Department, studied the unconsolidated aquifers in the Enfield Creek Valley in the town of Enfield, Tompkins County, New York. The objective of this study was to characterize the hydrogeology and water quality of the unconsolidated aquifers in the Enfield Creek valley and produce a summary report of the findings. The spatial extent and hydrogeologic framework of these unconsolidated aquifers were delineated using existing data, including soils maps, well records, geologic logs, topographic data, and published reports. An interactive ArcGIS Online web map of the geospatial datasets is available here: https://usgs.maps.arcgis.com/home/webmap/viewer.html?webmap=b53518b0b6b74694932605c4578c00c3. These geospatial datasets support U.S. Geological Survey Scientific Investigations Report 2019-5136, "Geohydrology and Water Quality of the Unconsolidated Aquifers in the Enfield Creek Valley, Town of Enfield, Tompkins County, New York."
SIR2012-5282 Surficial Geology: Hydrogeology of the Susquehanna River valley-fill aquifer system and adjacent areas in eastern Broome and southeastern Chenango Counties, New York
공공데이터포털
The hydrogeology of the valley-fill aquifer system along a 32-mile reach of the Susquehanna River valley and adjacent areas was evaluated in eastern Broome and southeastern Chenango Counties, New York. The surficial geology, inferred ice-marginal positions, and distribution of stratified-drift aquifers were mapped from existing data. Ice-marginal positions, which represent pauses in the retreat of glacial ice from the region, favored the accumulation of coarse-grained deposits whereas more steady or rapid ice retreat between these positions favored deposition of fine-grained lacustrine deposits with limited coarse-grained deposits at depth. Unconfined aquifers with thick saturated coarse-grained deposits are the most favorable settings for water-resource development, and three several-mile-long sections of valley were identified (mostly in Broome County) as potentially favorable: (1) the southernmost valley section, which extends from the New YorkPennsylvania border to about 1 mile north of South Windsor, (2) the valley section that rounds the west side of the umlaufberg (an isolated bedrock hill within a valley) north of Windsor, and (3) the eastwest valley section at the Broome County Chenango County border from Nineveh to East of Bettsburg (including the lower reach of the Cornell Brook valley). Fine-grained lacustrine deposits form extensive confining units between the unconfined areas, and the water-resource potential of confined aquifers is largely untested.Recharge, or replenishment, of these aquifers is dependent not only on infiltration of precipitation directly on unconfined aquifers, but perhaps more so from precipitation that falls in adjacent upland areas. Surface runoff and shallow groundwater from the valley walls flow downslope and recharge valley aquifers. Tributary streams that drain upland areas lose flow as they enter main valleys on permeable alluvial fans. This infiltrating water also recharges valley aquifers.Current (2012) use of water resources in the area is primarily through domestic wells, most of which are completedin fractured bedrock in upland areas. A few villages in the Susquehanna River valley have supply wells that draw water from beneath alluvial fans and near the Susquehanna River, which is a large potential source of water from induced infiltration.