데이터셋 상세
미국
Uhuru Fourth (4U) Catalog
The Fourth Uhuru (4U) Catalog lists 339 X-ray sources that were observed with the Uhuru (SAS A) X-ray observatory. It contains positional information in the form of 90% confidence level error boxes, 2-6 keV intensities, possible optical and radio counterparts, and alternative names for sources observed in earlier compilations. The major classes of identified objects include binary stellar systems, supernova remnants, Seyfert galaxies, clusters of galaxies, and possibly the new class of superclusters of galaxies. The Uhuru satellite was a scanning X-ray instrument with a narrow (1 by 10 degree FWFM) and a wide (10 by 10 degree FWFM) collimator (cf. Giacconi et al. 1971, ApJ, 165, L27). Typically, the scan rate was 0.5 degree/second, with the spin axis in one position for roughly one day. During the interval for which the spin axis was fixed, repeated scans were made of the same 10 by 360 degrees band of the sky. For this catalog, the individual scans were superposed using aspect data from an orthogonally mounted triad of magnetometers and a Sun sensor onboard the spacecraft, supplemented by observations of well-located X-ray sources. The observations employed in producing this catalog were obtained over a total of 429 days between 1970 December 12 and 1973 March 18, apart from a gap between 1972 July and December when the spacecraft's transmitter was operating improperly. This online catalog was created by the HEASARC in March 2003 based on a table obtained originally from the ADC website (<a href="https://heasarc.gsfc.nasa.gov/FTP/heasarc/dbase/misc_files/uhuru4/4u.dat">https://heasarc.gsfc.nasa.gov/FTP/heasarc/dbase/misc_files/uhuru4/4u.dat</a>), which was modified by the HEASARC to include some parameters that were in the published catalog (Table 1 in the reference) but were not in the ADC table. The HEASARC made a small number of other changes and corrections to the table which are listed in the HEASARC_Implementation section of this help. Notice that the ADC table itself differs in a number of respects from the published Table 1, e.g., the comments are sometimes abbreviated and/or different, some of the names are slightly different (usually by one digit in the RA minutes part), and three of the entries have differing names and positions. This is a service provided by NASA HEASARC .
데이터 정보
연관 데이터
Catalog of High-Mass X-Ray Binaries in the Galaxy (4th Ed.)
공공데이터포털
This table contains the 4th edition of the Catalog of High-Mass X-Ray Binaries (HMXBs) in the Galaxy. The catalog contains source name(s), coordinates, finding charts, X-ray luminosities, system parameters, and stellar parameters of the components and other characteristic properties for 114 HMXBs, together with a comprehensive selection of the relevant literature. The aim of this catalog is to provide some basic information on the X-ray sources and their counterparts in other wavelength ranges (gamma-rays, UV, optical, IR, radio). About 60% of the high-mass X-ray binary candidates are known or suspected Be/X-ray binaries, while 32% are supergiant/X-ray binaries. Some sources, however, are only tentatively identified as high-mass X-ray binaries on the basis of their X-ray properties similar to the known high-mass X-ray binaries. Further identification in other wavelength bands is needed to finally determine the nature of these sources. In cases where there is some doubt about the high-mass nature of the X-ray binary this is noted. Literature published before 1 October 2005 has, as far as possible, been taken into account. Information on the numbers used to code references is available at the URL https://cdsarc.cds.unistra.fr/ftp/cats/J/A+A/455/1165/refs.dat Individual notes on each HMXB are available at the URL https://cdsarc.cds.unistra.fr/ftp/cats/J/A+A/455/1165/notes.dat This database was first created by the HEASARC in January 2001, based on the 2000 version of this catalog. It was updated to the 4th edition in September 2006, based on the CDS catalog J/A+A/455/1165. This is a service provided by NASA HEASARC .
The Fourth U.S. Naval Observatory CCD Astrograph Catalog
공공데이터포털
UCAC4 is a compiled, all-sky star catalog covering mainly the 8 to 16 magnitude range in a single bandpass between V and R. Positional errors are about 15 to 20 mas for stars in the 10 to 14 mag range. Proper motions have been derived for most of the about 113 million stars utilizing about 140 other star catalogs with significant epoch difference to the UCAC CCD observations. These data are supplemented by 2MASS photometric data for about 110 million stars and 5-band (B,V,g,r,i) photometry from the APASS (AAVSO Photometric All-Sky Survey) for over 50 million stars. UCAC4 also contains error estimates and various flags. All bright stars not observed with the astrograph have been added to UCAC4 from a set of Hipparcos and Tycho-2 stars. Thus UCAC4 should be complete from the brightest stars to about R=16, with the source of data indicated in flags.
Chandra Archive Of Galaxies Ultraluminous X-Ray Source Catalog
공공데이터포털
One hundred fifty-five (the abstract in the paper erroneously states the number to be 154) discrete, non-nuclear, ultraluminous X-ray (ULX) sources, with spectroscopically determined intrinsic X-ray luminosities greater than 1039 erg/s, have been identified in 82 galaxies that were observed with Chandra's Advanced CCD Imaging Spectrometer (ACIS). Positions, X-ray luminosities, and spectral and timing characteristics of these ULXs are contained in this table. Eighty-three percent of ULX candidates have spectra that can be described as absorbed power laws with mean index Gamma = 1.74 and column density NH = 2.24 x 1021 atoms cm-2, or ~5 times the average Galactic column. About 20% of the ULXs have much steeper indices indicative of a soft, and likely thermal, spectrum. The locations of ULXs in their host galaxies are strongly peaked toward their galaxy centers. The deprojected radial distribution of the ULX candidates is somewhat steeper than an exponential disk, indistinguishable from that of the weaker sources. About 5%-15% of ULX candidates are variable during the Chandra observations (which average 39.5 ks). Comparison of the cumulative X-ray luminosity functions of the ULXs to Chandra Deep Field results suggests ~25% of the sources may be background objects, including 14% of the ULX candidates in the sample of spiral galaxies and 44% of those in elliptical galaxies, implying the elliptical galaxy ULX population is severely compromised by background active galactic nuclei. Correlations with host galaxy properties confirm the number and total X-ray luminosity of the ULXs are associated with recent star formation and with galaxy merging and interactions. The preponderance of ULXs in star-forming galaxies as well as their similarities to less-luminous sources suggest they originate in a young but short-lived population such as the high-mass X-ray binaries, with a smaller contribution (based on spectral slope) from recent supernovae. The number of ULXs in elliptical galaxies scales with host galaxy mass and can be explained most simply as the high-luminosity end of the low-mass X-ray binary population. This table was created by the HEASARC in March 2007 based on CDS catalog J/ApJS/154/519 file table2.dat. This is a service provided by NASA HEASARC .
CatalogofGalaxiesObservedbytheEinsteinObservatoryIPC&HRI
공공데이터포털
NGC 2237 Chandra X-Ray Point Source Catalog
공공데이터포털
The authors have obtained high spatial resolution Chandra X-ray images of the NGC 2237 young stellar cluster on the periphery of the Rosette Nebula. They detect 168 X-ray sources, 80% of which have stellar counterparts in USNO, Two Micron All Sky Survey, and deep FLAMINGOS images. These constitute the first census of the cluster members with 0.2 <~ M <~ 2 Msun. Star locations in near-infrared color-magnitude diagrams indicate a cluster age of around 2 Myr with a visual extinction of 1 <~ AV <~ 3 at 1.4 kpc, the distance of the Rosette Nebula's main cluster NGC 2244. The authors derive the K-band luminosity function and the X-ray luminosity function of the cluster, which indicate a population of ~ 400-600 stars. The X-ray-selected sample shows a K-excess disk frequency of 13%. The young Class II counterparts are aligned in an arc ~3 pc long suggestive of a triggered formation process induced by the O stars in NGC 2244. The diskless Class III sources are more dispersed. Several X-ray emitting stars are located inside the molecular cloud and around gaseous pillars projecting from the cloud. These stars, together with a previously unreported optical outflow originating inside the cloud, indicate that star formation is continuing at a low level and the cluster is still growing. This X-ray view of young stars on the western side of the Rosette Nebula complements the authors' earlier studies of the central cluster NGC 2244 and the embedded clusters on the eastern side of the Nebula. The large-scale distribution of the clusters and molecular material is consistent with a scenario in which the rich central NGC 2244 cluster formed first, and its expanding H II region triggered the formation of the now-unobscured satellite clusters Rosette Molecular Cloud (RMC) XA and NGC 2237. A large swept-up shell of material around the H II region is now in a second phase of collect-and-collapse fragmentation, leading to the recent formation of subclusters. Other clusters deeper in the molecular cloud appear unaffected by the Rosette Nebula expansion. Some sources which have information from published catalogs are listed by their source_number value below, where for convenience, [OI81] = Ogura & Ishida (1981, PASJ, 33, 149), [MJD95] = Massey, Johnson, & Degioia-Eastwood (1995, ApJ, 454, 151) and [BC02] = Berghofer & Christian (2002, A&A, 384, 890):
 53 = [OI81] 14 = [MJD95] 104; spectral type B1V; pmRA=11.0 mas/yr, pmDE=-2.8 mas/yr; 54 = [OI81] 10 = [MJD95] 108; spectral type B2V; pmRA=-2.3 mas/yr, pmDE=-11.9 mas/yr; 61 = V539 Mon [OI81] 13 = [MJD95] 110; MSX6C G206.1821-02.3456; pmRA=2.8 mas/yr, pmDE=0.4 mas/yr; 71 = [OI81] 12 = [MJD95] 102; pmRA=6.8 mas/yr, pmDE=0.6 mas/yr; 128 = [OI81] 35 = [MJD95] 471; spectral type A2:; pmRA=-0.8 mas/yr, pmDE=3.6 mas/yr; 138 = [OI81] 36 = [MJD95] 497; spectral type B5; pmRA=6.5 mas/yr, pmDE=2.1 mas/yr; 141 = [MJD95] 498; pmRA=-3.0 mas/yr, pmDE=1.9 mas/yr; 149 = [BC02] 11; known X-ray source; log(Lx(ROSAT/PSPC))=31.01 erg/s; pmRA=0.6 mas/yr, pmDE=-12.6 mas/yr; 161 = [MJD95] 653; pmRA=-1.0 mas/yr, pmDE=-5.4 mas/yr 
This table was created by the HEASARC in July 2010 based on electronic versions of Tables 1, 2, 3 and 4 of the reference paper which were obtained from the electronic ApJ web site. To distinguish between the 130 X-ray sources in the primary sample (Table 1 of the reference paper) and the 38 X-ray sources in the tentative sample (Table 2 of the reference paper), the HEASARC has created a parameter called source_sample which is set to 'P' for the primary sources and to 'T' for the tentative sources. This is a service provided by NASA HEASARC .
IRAS 20126+4104 Chandra X-Ray Point Source Catalog
공공데이터포털
This table contains results from Chandra ACIS-I and Karl G. Jansky Very Large Array 6-cm continuum observations of the IRAS 20126+4104 massive star-forming region. The authors detect 150 X-ray sources within the 17' x 17' ACIS-I field, and a total of 13 radio sources within the 9.2' primary JVLA beam at 4.9 GHz. Among these observations are the first 6-cm detections of the central sources reported by Hofner et al. (2007, A&A, 465, 197), namely, I20N1, I20S, and I20var. A new variable radio source is also reported in Section 3.2 of the reference paper, [MHA2015] VLA G78.1907+3.364. Searching the 2MASS archive, the authors identified 88 near-infrared (NIR) counterparts to the X-ray sources. Only four of the X-ray sources had 6-cm counterparts. Based on an NIR color-color analysis and on the Besancon simulation of Galactic stellar populations, the authors estimate that approximately 80 X-ray sources are associated with this massive star-forming region. They detect an increasing surface density of X-ray sources toward the massive protostar IRAS 20126+4104 and infer the presence of a cluster of at least 43 young stellar objects within a distance of 1.2 pc from this protostar. The authors observed the IRAS 20126+4104 region with the Chandra ACIS-I instrument on 2003 March 17 for a total exposure time of 39.35 ks. C-band (6 cm) continuum observations of the massive star-forming region IRAS 20126+4104 were conducted with the VLA operated by NRAO on 2011 August 7. These X-ray and radio data are augmented by NIR and optical archival data. For the Mid-IR wavelength regions, the authors searched the Spitzer Enhanced Imaging Products Point Source catalog. This table was created by the HEASARC in March 2016 based on the CDS catalog J/ApJS/219/41 files table1.dat and table5.dat. This is a service provided by NASA HEASARC .
M 33 Chandra X-Ray Point Source Catalog
공공데이터포털
NGC 4649 Chandra X-Ray Point Source Catalog 2
공공데이터포털
This table contains the main X-ray source catalog for the Chandra monitoring observations of the 16.5-Mpc distant elliptical galaxy, NGC 4649. The galaxy has been observed with Chandra ACIS-S3 in six separate pointings, reaching a total exposure of 299 ks. There are 501 X-ray sources detected in the 0.3-8.0 keV band in the merged observation or in one of the six individual observations; 399 sources are located within the D25 ellipse. The observed 0.3-8.0 keV luminosities of these 501 sources range from 9.3 x 1036 erg s-1 to 5.4 x 1039 erg s-1. The 90% detection completeness limit within the D25 ellipse is 5.5 x 1037 erg s-1. Based on the surface density of background active galactic nuclei (AGNs) and the detection completeness, we expect ~ 45 background AGNs among the catalog sources (~ 15 within the D25 ellipse). There are nine sources with luminosities greater than 1039 erg s-1, which are candidates for ultraluminous X-ray sources. The nuclear source of NGC 4649 is a low-luminosity AGN, with an intrinsic 2.0-8.0 keV X-ray luminosity of 1.5 x 1038 erg s-1. The X-ray colors suggest that the majority of the catalog sources are low-mass X-ray binaries (LMXBs). The authors find that 164 of the 501 X-ray sources show long-term variability, indicating that they are accreting compact objects, and discover four transient candidates and another four potential transients. They also identify 173 X-ray sources (141 within the D25 ellipse) that are associated with globular clusters (GCs) based on Hubble Space Telescope and ground-based data; these LMXBs tend to be hosted by red GCs. Although NGC 4649 has a much larger population of X-ray sources than the structurally similar early-type galaxies, NGC 3379 and NGC 4278, the X-ray source properties are comparable in all three systems. This HEASARC table contains the main Chandra source catalog of the basic properties of the 501 X-ray detected sources (Table 3 in the reference paper which includes both sources detected in the merged X-ray image as well as a number only detected in the individual observations), and also the information on source counts, hardness ratios and soft and hard X-ray colors in the merged observation for the same 501 X-ray detected sources (Table 4 in the reference paper). It does not contain the information on source counts, hardness ratios and soft and hard X-ray colors for these same sources in the six individual observations that were contained in Tables 5 - 10 of the reference paper. This table was created by the HEASARC in March 2013 based on the electronic version of Tables 3 and 4 from the reference paper which were obtained from the ApJS website.. This is a service provided by NASA HEASARC .
NGC 2244/Rosette Nebula Chandra X-Ray Point Source Catalog
공공데이터포털
This table contains the point source catalog based on the first high spatial resolution X-ray study of NGC 2244, the 2 Myr old stellar cluster in the Rosette Nebula, using Chandra. Over 900 X-ray sources are detected within 20 arcminutes of the cluster central position (J2000.0 RA and Dec of 6 31 59.9, +4 55 36); 77% of these X-ray sources have optical or FLAMINGOS NIR stellar counterparts and are mostly previously uncataloged young cluster members. The X-ray-selected population is estimated to be nearly complete between 0.5 and 3 Msolar. A number of further results emerge from the analysis: (1) The X-ray luminosity function (XLF) and the associated K-band LF indicate a normal Salpeter IMF for NGC 2244. This is inconsistent with the top-heavy IMF reported from earlier optical studies that lacked a good census of < 4 Msolar stars. By comparing the NGC 2244 and Orion Nebula Cluster XLFs, the authors estimate a total population of ~2000 stars in NGC 2244. (2) The spatial distribution of X-ray stars is strongly concentrated around the central O5 star, HD 46150. The other early O star, HD 46223, has few companions. The cluster's stellar radial density profile shows two distinctive structures: a power-law cusp around HD 46150 that extends to ~0.7 pc, surrounded by an isothermal sphere extending out to 4 pc with core radius 1.2 pc. This double structure, combined with the absence of mass segregation, indicates that this 2 Myr old cluster is not in dynamical equilibrium. (3) The fraction of X-ray-selected cluster members with K-band excesses caused by inner protoplanetary disks is 6%, slightly lower than the 10% disk fraction estimated from the FLAMINGOS study based on the NIR-selected sample. (4) X-ray luminosities for 24 stars earlier than B4 confirm the long-standing log (LX/Lbol) ~ -7 relation. The Rosette OB X-ray spectra are soft and consistent with the standard model of small-scale shocks in the inner wind of a single massive star. This table was created by the HEASARC in July 2008 based on electronic versions of Tables 2, 3, 4, 5 and 6 of the reference paper which were obtained from the electronic ApJ web site. This is a service provided by NASA HEASARC .
W 40 Star-Forming Region Chandra X-Ray Point Source Catalog
공공데이터포털
The young stellar cluster illuminating the W40 H II region, one of the nearest massive star-forming regions (SFRs), has been observed with the ACIS detector on board the Chandra X-ray Observatory. Due to its high obscuration, this is a poorly studied stellar cluster with only a handful of bright stars visible in the optical band, including three OB stars identified as primary excitation sources. The authors detect 225 X-ray sources, of which 85% are confidently identified as young stellar members of the region. Two potential distances of the cluster, 260 pc and 600 pc, are used in the paper. Supposing the X-ray luminosity function of SFRs to be universal, it supports a 600 pc distance as a lower limit for W40 and a total population of at least 600 stars down to 0.1 Msun under the assumption of a coeval population with a uniform obscuration. In fact, there is strong spatial variation in Ks-band-excess disk fraction and non-uniform obscuration due to a dust lane that is identified in absorption in optical, infrared, and X-ray. The dust lane is likely part of a ring of material which includes the molecular core within W40. In contrast to the likely ongoing star formation in the dust lane, the molecular core is inactive. The star cluster has a spherical morphology, an isothermal sphere density profile, and mass segregation down to 1.5 Msun. However, other cluster properties, including a <= 1 Myr age estimate and ongoing star formation, indicate that the cluster is not dynamically relaxed. X-ray diffuse emission and a powerful flare from a young stellar object are also reported in the reference paper. This table was created by the HEASARC in March 2011 based on electronic versions of Tables, 1, 2 and 4 of the reference paper which were obtained from the ApJ web site. This is a service provided by NASA HEASARC .