StarswithRotationPeriods&X-RayLuminositiesCatalog
공공데이터포털
This table contains photometric and derived stellar parameters for a sample of 820 solar and late-type stars (the original table of 824 entries had 4 near-duplicate entries for the stars HD 19668, HD 95188, HD 216803 and HD 285382 which have been removed by the HEASARC) from nearby open clusters and the field, including rotation periods and X-ray luminosities. This sample was used by the authors to study the relationship between rotation and stellar activity and derive a new estimate of the convective turnover time. From an unbiased subset of this sample the power law slope of the unsaturated regime, L
X/L
bol ~ R
obeta, is fit as beta = -2.70 +/- 0.13. This is inconsistent with the canonical beta = -2 slope to a confidence of 5 sigma, and argues for an additional term in the dynamo number equation. From a simple scaling analysis, this implies Delta(Omega)/Omega ~ Omega
0.7, i.e. the differential rotation of solar-type stars gradually declines as they spin down. Super-saturation is observed for the fastest rotators in this sample and its parametric dependencies are explored. Significant correlations are found with both the corotation radius and the excess polar updraft, the latter theory providing a stronger dependence and being supported by other observations. The authors estimate mass-dependent empirical thresholds for saturation and super- saturation and map out three regimes of coronal emission. Late F-type stars are shown never to pass through the saturated regime, passing straight from super-saturated to unsaturated X-ray emission. The theoretical threshold for coronal stripping is shown to be significantly different from the empirical saturation threshold (R
o < 0.13), suggesting it is not responsible. Instead, the authors suggest that a different dynamo configuration is at work in stars with saturated coronal emission. This is supported by a correlation between the empirical saturation threshold and the time when stars transition between convective and interface sequences in rotational spin-down models. This table was created by the HEASARC in March 2012 based on
CDS Catalog J/ApJ/743/48 file catalog.dat. The original table had 824 entries, including 4 near-duplicate entries for the stars HD 19668, HD 95188, HD 216803 and HD 285382, which have been removed by the HEASARC. This is a service provided by NASA HEASARC .
Ritter Binaries Related to CVs Catalog (7.21 Edition)
공공데이터포털
This HEASARC database table contains information on the so-called "Related Objects" only, as taken from the Catalog of Cataclysmic Binaries, Low-Mass X-ray Binaries, and Related Objects (7th Edition, Release 7.21, March 2014) of Ritter & Kolb. The complete catalog lists coordinates, apparent magnitudes, orbital parameters, stellar parameters of the components, and other characteristic properties of 1166 cataclysmic binaries, 105 low-mass X-ray binaries, and 500 related objects with known or suspected orbital periods. The HEASARC has for simplicity split this catalog into three Browse database tables, one for each class of objects: the present table (RITTERRBIN) containing the related binaries' data, a second one (
RITTERCV) containing cataclysmic binaries' data, and a third one (
RITTERLMXB) containing the low-mass X-ray binaries' data. The literature published before 1 January 2014 has, as far as possible, been taken into account. Related objects are detached binaries consisting of either a white dwarf or a white dwarf precursor primary and of a low-mass secondary. The secondary may also be a highly evolved star. This table was last updated by the HEASARC in April 2014 based on the pcbdata.dat file from the
CDS Catalog B/cb. This is a service provided by NASA HEASARC .
VLA Goulds Belt Survey Taurus-Auriga Complex Source Catalog
공공데이터포털
This table contains results from a multi-epoch radio study of the Taurus-Auriga complex made with the Karl G. Jansky Very Large Array (JVLA) at frequencies of 4.5 GHz and 7.5 GHz. A total of 610 sources were detected, 59 of which are related to young stellar objects (YSOs) and 18 to field stars. The properties of 56% of the young stars are compatible with non-thermal radio emission. The authors also show that the radio emission of more evolved YSOs tends to be more non-thermal in origin and, in general, that their radio properties are compatible with those found in other star-forming regions. By comparing their results with previously reported X-ray observations, the authors noticed that YSOs in Taurus-Auriga follow a Guedel-Benz relation with a scaling factor, kappa, of 0.03, as they previously suggested for other regions of star formation. In general, YSOs in Taurus-Auriga and in all the previous studied regions seem to follow this relation with a dispersion of ~1 dex. Finally, the authors propose that most of the remaining sources are related with extragalactic objects but provide a list of 46 unidentified radio sources whose radio properties are compatible with a YSO nature (identified in this implementation of their catalog by values for the parameter radio_yso_flag of 'Y'). The observations were obtained with the JVLA of the National Radio Astronomy Observatory (NRAO) in its B and BnA configuration. Two frequency sub-bands, each 1 GHz wide, and centered at 4.5 and 7.5 GHz, respectively, were recorded simultaneously. The observations were obtained in three different time periods (February 25/26/28 to March 6, April 12/17/20/25, and April 30 to May 1/5/14/22, all in 2011) typically separated from one another by a month: see Table 1 of the reference paper for more details. For their study, the authors observed 127 different target fields distributed across the cloud complex (Figure 1 of the reference paper). The fields were chosen to cover previously known YSOs. In 33 of those fields, the authors could observe more than one YSO target, while in the remaining 94 fields, only one YSO was targeted. In most cases, the infrared evolutionary class (i.e., Classes I, II, or III) or T Tauri evolutionary status (classical or weak line) of the targeted sources was known from the literature. The final images covered circular areas of 8.8 and 14.3 arcminutes in diameter, for the 7.5 and 4.5 GHz sub-bands, respectively, and were corrected for the effects of the position-dependent primary beam response. The noise levels reached for each individual observation was about ~40 µJy and ~30 µJy, at 4.5 GHz and7.5 GHz, respectively. The visibilities of the three, or two, observations obtained for each field were concatenated to produce a new image with a lower noise level (of about ~25 µJy at 4.5 GHz and ~18 µJy at 7.5 GHz). The angular resolution of ~1 arcsecond (see the synthesized beam sizes in Table 1 of the reference paper) allows an uncertainty in position of ~0.1 arcseconds or better. In the observed area, there are a total of 196 known YSOs.The first step was the identification of radio sources in the observed fields. The authors follow the procedure and criteria presented by Dzib et al. (2013, ApJ, 775, 63) who consider a detection as firm if the sources have a flux larger than 4 times the noise level and there is a counterpart known at another wavelength, else they require a flux which is 5 times the noise level. The identification was done using the images corresponding to the concatenation of the observed epochs, which provides the highest sensitivity. From this, a total of 609 sources were detected. Of these sources, 215 were only detected in the 4.5 GHz sub-band, while six were only detected in the 7.5 GHz sub-band. The remaining 388 sources were detected in both sub-bands. The authors searched the literature for previous radio detections, and for counterparts at X-ray, optical, near-infrared, and mid-infrared wavelengths. The
RCW 38 Young Stellar Objects Catalog
공공데이터포털
This table contains some of the results from a study of the structure of the high-mass star-forming region RCW 38 and the spatial distribution of its young stellar population. Spitzer Infrared Array Camera (IRAC) photometry (3-8 micron) is combined with Two Micron All Sky Survey (2MASS) near-IR data to identify young stellar objects (YSOs) by IR-excess emission from their circumstellar material. Chandra X-ray data are used to identify class III pre-main-sequence stars lacking circumstellar material. The authors identify 624 YSOs: 23 class 0/I and 90 flat spectrum (FS) protostars, 437 class II stars, and 74 class III stars. They also identify 29 (27 new) O star candidates over the IRAC field. Seventy-two stars exhibit IR-variability, including 7 class 0/I and 12 flat spectrum YSOs. A further 177 tentative candidates are identified by their location in the IRAC [3.6] versus [3.6]-[5.8] color-magnitude diagram. The authors find strong evidence of subclustering in the region. Three subclusters were identified surrounding the central cluster, with massive and variable stars in each subcluster. The central region shows evidence of distinct spatial distributions of the protostars and pre-main-sequence stars. A previously detected IR cluster, DB2001_Obj36, has been established as a subcluster of RCW 38. This suggests that star formation in RCW 38 occurs over a more extended area than previously thought. The gas-to-dust ratio is examined using the X-ray derived hydrogen column density, NH and the K-band extinction, and found to be consistent with the diffuse interstellar medium, in contrast with Serpens and NGC 1333. The authors posit that the high photoionizing flux of massive stars in RCW 38 affects the agglomeration of the dust grains. This table contains the list of 624 young stellar objects (given in Tables 3 and 4 of the reference paper) found among the Spitzer sources in the field of RCW 38 using the two selection techniques described in Section 3 of the reference paper: (1) selection of stars with IR excesses in IR color-color diagrams, and (2) identification of X-ray luminous YSOs by comparing X-ray sources with IR detections. The latter technique was used to identify Type III YSOs lacking emission from a dusty disk. This table does NOT contain (i) the 177 candidate YSOs listed in Table 5 of the reference paper which were identified using the [3.6] versus [3.6] - [5.8] color-magnitude diagram, since contamination removal methods could not be utilized for these objects, (ii) the 24 candidate variable YSOs listed in Table 6 of the reference paper, nor (iii) 21 of the 29 candidate O-star cluster members which were listed in table 7 of the reference paper. This table was created by the HEASARC in January 2012 based on an electronic version of Tables 3 and 4 from the reference paper which were obtained from the ApJ web site. This is a service provided by NASA HEASARC .
RCW 38 Chandra X-Ray Point Source Catalog 2
공공데이터포털
This table contains some of the results from a study of the structure of the high-mass star-forming region RCW 38 and the spatial distribution of its young stellar population. Spitzer Infrared Array Camera (IRAC) photometry (3-8 micron) is combined with Two Micron All Sky Survey (2MASS) near-IR data to identify young stellar objects (YSOs) by IR-excess emission from their circumstellar material. Chandra X-ray data are used to identify class III pre-main-sequence stars lacking circumstellar material. The authors identify 624 YSOs: 23 class 0/I and 90 flat spectrum (FS) protostars, 437 class II stars, and 74 class III stars. They also identify 29 (27 new) O star candidates over the IRAC field. Seventy-two stars exhibit IR-variability, including 7 class 0/I and 12 flat spectrum YSOs. A further 177 tentative candidates are identified by their location in the IRAC [3.6] versus [3.6]-[5.8] color-magnitude diagram. The authors find strong evidence of subclustering in the region. Three subclusters were identified surrounding the central cluster, with massive and variable stars in each subcluster. The central region shows evidence of distinct spatial distributions of the protostars and pre-main-sequence stars. A previously detected IR cluster, DB2001_Obj36, has been established as a subcluster of RCW 38. This suggests that star formation in RCW 38 occurs over a more extended area than previously thought. The gas-to-dust ratio is examined using the X-ray derived hydrogen column density, NH and the K-band extinction, and found to be consistent with the diffuse interstellar medium, in contrast with Serpens and NGC 1333. The authors posit that the high photoionizing flux of massive stars in RCW 38 affects the agglomeration of the dust grains. This table contains the list of 536 X-ray sources found in the Chandra data using a three-pass method with the CIAO 3.4 Wavdetect tool. This table was created by the HEASARC in January 2012 based on an electronic version of Table 2 from the reference paper which was obtained from the ApJ website. Some of the values for the name parameter in the HEASARC's implementation of this table were corrected in April 2018. This is a service provided by NASA HEASARC .
Bright Star Catalog
공공데이터포털
The BSC5P database table contains data derived from the Bright Star Catalog, 5th Edition, preliminary, which is widely used as a source of basic astronomical and astrophysical data for stars brighter than magnitude 6.5. The database contains the identifications of included stars in several other widely-used catalogs, double- and multiple-star identifications, indication of variability and variable-star identifiers, equatorial positions for B1900.0 and J2000.0, galactic coordinates, UBVRI photoelectric photometric data when they exist, spectral types on the Morgan-Keenan (MK) classification system, proper motions (J2000.0), parallax, radial- and rotational-velocity data, and multiple-star information (number of components, separation, and magnitude differences) for known non-single stars. This table was created by the HEASARC in 1995 based upon a file obtained from either the ADC or the CDS. A number of revisions have been made by the HEASARC to this original version, e.g., celestial positions were added for the 14 non-stellar objects which have received HR numbers: HR 92, 95, 182, 1057, 1841, 2472, 2496, 3515, 3671, 6309, 6515, 7189, 7539 and 8296. In January 2014, the very incorrect position for HR 3671 = NGC 2808 was fixed (the Declination is -65 degrees not +65 degrees!), and smaller corrections were made to the positions of HR 2496, 3515 and 6515 so as to bring them in better agreement with the positions listed in SIMBAD and NED This is a service provided by NASA HEASARC .