데이터셋 상세
미국
VLA Extended-Chandra Deep Field-South Classification Catalog
The sub-mJy radio population is a mixture of active systems, that is star-forming galaxies (SFGs) and active galactic nuclei (AGNs). In their paper, the authors study a sample of 883 radio sources detected at 1.4 GHz in a deep Very Large Array (VLA) survey of the Extended Chandra Deep Field-South (E-CDF-S) that reaches a best rms sensitivity of 6 microJansky (µJy). The authors have used a simple scheme to disentangle SFGs, radio-quiet (RQ), and radio-loud (RL) AGNs based on the combination of radio data with Chandra X-ray data and mid-infrared observations from Spitzer. They find that at flux densities between about 30 and 100 uJy, the radio population is dominated by SFGs (~60%) and that RQ AGNs become increasingly important over RL ones below 100 uJy. In the paper, the authors also compare the host galaxy properties of the three classes in terms of morphology, optical colors and stellar masses. Their results show that both SFG and RQ AGN host galaxies have blue colors and late-type morphology while RL AGNs tend to be hosted by massive red galaxies with early-type morphology. This supports the hypothesis that radio emission in SFGs and RQ AGNs mainly comes from the same physical process: star formation in the host galaxy. This table was created by the HEASARC in January 2014 based on the machine-readable version of Table 1 from the reference paper which was obtained from the MNRAS web site. This is a service provided by NASA HEASARC .
데이터 정보
연관 데이터
VLA Survey of Chandra Deep Field South
공공데이터포털
This table contains some of the results from 20 and 6 cm VLA deep observations of the Chandra Deep Field-South (CDF-S), including the Extended CDF-S (E-CDF-S). In the reference paper, the authors discuss the radio properties of 266 cataloged radio sources, of which 198 are above a 20-cm completeness level reaching down to 43 microJanskies (µJy) at the center of the field. Survey observations made at 6 cm over a more limited region cover the original CDF-S to a comparable level of sensitivity as the 20-cm observations. Of 266 cataloged radio sources, 52 have X-ray counterparts in the CDF-S and a further 37 have counterparts in the E-CDF-S area not covered by the 1 Ms exposure. Using a wide range of material, the authors have found optical or infrared counterparts for 254 radio sources, of which 186 have either spectroscopic or photometric redshifts. Three radio sources have no apparent counterpart at any other wavelength. Measurements of the 20-cm radio flux density at the position of each CDF-S X-ray source detected a further 30 radio sources (not included in this table) above a conservative 3-sigma detection limit. X-ray and sub-millimeter observations have been traditionally used as a measure of AGN and star formation activity, respectively. These new observations probe the faint end of both the star formation and radio galaxy/AGN population, as well as the connection between the formation and evolution of stars and SMBHs. Both of the corresponding gravitational and nuclear fusion-driven energy sources can lead to radio synchrotron emission. AGN and radio galaxies dominate at high flux densities. Although emission from star formation becomes more prominent at the microJansky levels reached by deep radio surveys, even for the weakest sources, an apparent significant contribution from low-luminosity AGN as well as from star formation is still found. Notice that are 319 entries in this table corresponding to the 266 catalogued radio sources, due to the fact that some of these sources have multiple components. In such cases, the composite source as well as each of its components are listed as separate entries, e.g., source 7 which has 3 components (A, B and C) has 4 entries in this table. This table was created by the HEASARC in November 2008 based on the electronic version of Table 1 from the reference paper which was obtained from the ApJ web site. This is a service provided by NASA HEASARC .
VLA A2390 Cluster of Galaxies 1.4-GHz Source Catalog
공공데이터포털
This table contains the 1.4-GHz source catalog for the field of the cluster of galaxies A2390 as observed with the Very Large Array (VLA). This is one of the deepest radio images of a cluster field ever taken. The image covers an area of 34' x 34' with a synthesized beam of ~1.4" and a noise level of ~5.6 µJy (µJy) near the field center. In the reference paper, the authors construct differential number counts for the central regions (radius < 16') of this cluster, and find that the faint (S1.4GHz < 3 mJy) counts of A2390 are roughly consistent with the lowest blank field number counts. Their analyses indicate that the number counts are primarily from field radio galaxies. The authors suggest that the disagreement of their number counts for this cluster with those from a similarly deep observation of A370 that was also presented in the reference paper can be largely attributed to cosmic variance. The authors observed the A2390 cluster field with the VLA in the A configuration for ~31.4hr on-source during 2008 October. The field center is located at 21:53:36 +17:41:52 (J2000). This table was created by the HEASARC in August 2017 based on CDS Catalog J/ApJS/202/2/ file table2.dat. This file contained 699 entries for sources detected at 1.4 GHz in the A370 field, as well as 524 entries for sources detected at 1.4 GHz in the A2390 field. Only the latter are included in this HEASARC table, while the former can be found in the HEASARC's VLA3701P4 table. This is a service provided by NASA HEASARC .
VLA A370 Cluster of Galaxies 1.4-GHz Source Catalog
공공데이터포털
This table contains the 1.4-GHz source catalog for the field of the cluster of galaxies A370 as observed with the Very Large Array (VLA). This is one of the deepest radio images of a cluster field ever taken. The image covers an area of 40' x 40' with a synthesized beam of ~1.7" and a noise level of ~5.7 µJy (µJy) near the field center. The authors have cataloged 200 redshifts for the A370 field. In the reference paper, they construct differential number counts for the central regions (radius < 16') of this cluster, and find that the faint (S1.4GHz < 3 mJy) counts of A370 are roughly consistent with the highest blank field number counts. Their analyses indicate that the number counts are primarily from field radio galaxies. The authors suggest that the disagreement of their number counts for this cluster with those from a similarly deep observation of A2390 that was also presented in the reference paper can be largely attributed to cosmic variance. The authors observed the A370 cluster field with the VLA in the A configuration for ~42.4hr on-source during 1999 August and September. K. S. Dwarakanath observed A370 in the B configuration for ~18.4hr on-source during 1994 August and September. The field center is located at 02:39:32 -01:35:07 (J2000). This is offset by approximately 5 arcminutes from the cluster center at 02:39:50.5 -01:35:08. The authors also targeted 58 radio sources, in A370, that had no existing optical spectral data using the Hydra fiber spectrograph on the Wisconsin-Indiana-Yale-NOAO (WIYN) telescope (spectral window of ~4500 - 9500 Angstrom). They preferentially targeted optically bright galaxies, obtaining these data in a single two-hour pointing on 2012 January 20. Of the 58 targets, the authors obtained high-confidence redshifts for 36. This table was created by the HEASARC in August 2017 based on CDS Catalog J/ApJS/202/2/ file table2.dat. This file contained 699 entries for sources detected at 1.4 GHz in the A370 field, as well as 524 entries for sources detected at 1.4 GHz in the A2390 field. Only the former are included in this HEASARC table, while the latter can be found in the HEASARC's VLA23901P4 table. This is a service provided by NASA HEASARC .
Giant Metrewave Radio Telescope VVDS-VLA Deep Field 610-MHz Radio Source Catalog
공공데이터포털
VLA-COSMOS 3-GHz Large Project Multiwavelength Counterparts Catalog
공공데이터포털
In the reference paper, the authors study the composition of the faint radio population selected from the VLA-COSMOS 3-GHz Large Project, a radio continuum survey performed at 10-cm wavelength. The survey covers a 2.6 square degree area with a mean rms of ~2.3 µJy/beam (µJy/beam), cataloguing 10,830 sources above 5 sigma, and enclosing the full 2 square degree COSMOS field. By combining these radio data with optical, near-infrared (UltraVISTA), and mid-infrared (Spitzer/IRAC) data, as well as X-ray data (Chandra), the authors find counterparts to radio sources for ~93% of the total radio sample in the unmasked areas of the COSMOS field, i.e., those not affected by saturated or bright sources in the optical to near-IR (NIR) bands, reaching out to z ~ 6. They further classify the sources as star-forming galaxies or AGN based on various criteria, such as X-ray luminosity, observed mid-infrare (MIR) color, UV-far-infrared (FIR) spectral-energy distribution (SED), rest-frame near-ultraviolet (NUV)-optical color corrected for dust extinction, and radio-excess relative to that expected from the the hosts' star-formation rate. The authors separate the AGN into sub-samples dominated by low-to-moderate and moderate-to-high radiative luminosity AGN, i.e., candidates for high-redshift analogs to local low- and high-excitation emission line AGN, respectively. They study the fractional contributions of these sub-populations down to radio flux levels of ~11 uJy at 3 GHz (or ~20 uJy at 1.4 GHz assuming a spectral index of -0.7), and find that the dominant fraction at 1.4 GHz flux densities above ~200 uJy is constituted of low-to-moderate radiative luminosity AGN MLAGN). Below densities of ~100 uJy the fraction of star-forming galaxies (SFG) increases to ~60%, followed by the moderate-to-high radiative luminosity AGN (HLAGN) with ~20%, and MLAGN with ~20%. Based on this observational evidence, the authors extrapolate the fractions down to sensitivities of the Square Kilometer Array (SKA). Their estimates suggest that at the faint flux limits to be reached by the (Wide, Deep, and UltraDeep) SKA1 surveys, a selection based only on radio flux limits can provide a simple tool to efficiently identify samples highly (>75%) dominated by star-forming galaxies. This table contains the full list of 9,161 optical-MIR counterparts collected over the largest unmasked area accessible to each catalog, being 1.77, 1.73, and 2.35 square degrees for COSMOS2015, i-band, and IRAC catalogs, respectively. The catalog lists the counterpart IDs, properties, as well as the individual criteria used in this work to classify these radio sources. The authors note that complete, non-overlapping samples within a well defined, effective area of 1.77 square degrees (COSMOS2015 masked area flag_C15 = 0, can be formed by combining (i) HLAGN, MLAGN, and clean SFG samples, or, alternatively, (ii) the radio-excess and no-radio-excess samples. This table was created by the HEASARC in July 2017 based on CDS Catalog J/A+A/602/A2 file table1.dat, the VLA-COSMOS 3-GHz Large Project multiwavelength counterpart catalog. This is a service provided by NASA HEASARC .
VLA Extended-Chandra Deep Field-South 1.4-GHz Source Catalog
공공데이터포털
Deep radio observations at 1.4 GHz for the Extended Chandra Deep Field South were performed in 2007 June through September and presented in a first data release (Miller et al. 2008, ApJS, 179, 114). The survey was made using six separate pointings of the Very Large Array with over 40 hr of observation per pointing. In the current study, the authors improve on the data reduction to produce a second data release (DR2) mosaic image. This DR2 image covers an area of about a third of a square degree, reaches a best rms sensitivity of 6 µJy (µJy), and has a typical sensitivity of 7.4 uJy per 2.8" by 1.6" beam. The authors also present a more comprehensive catalog, including sources down to peak flux densities of five or more times the local rms noise, along with information on source sizes and relevant pointing data. In their paper, they discuss in some detail the consideration of whether sources are resolved under the complication of a radio image created as a mosaic of separate pointings, each suffering some degree of bandwidth smearing, and the accurate evaluation of the flux densities of such sources. Finally, the radio morphologies and optical/near-IR counterpart identifications are used to identify 17 likely multiple-component sources so as to arrive at a catalog of 883 radio sources (and also 49 individual components of the 17 multi-component sources), which is roughly double the number of sources contained in the first data release. In order to cover the full E-CDF-S area at near-uniform sensitivity, the authors pointed the VLA at six separate coordinate locations arranged in a hexagonal grid around the adopted center of the CDF-S, viz. RA, Dec (J2000) 03h 32m 28.00s, -27o 48' 30.0". The observations were spread over many days on account of the low declination of the field and typically amounted to 5 hr of time per calendar date. The details of the individual pointings are:
 Pointing ID R.A. (J2000) DE. (J2000) rms sensitivity for final image ECDFS 1 03:33:22.25 -27:48:30.0 10.5 uJy ECDFS 2 03:32:55.12 -27:38:03.0 9.4 uJy ECDFS 3 03:32:00.88 -27:38:03.0 9.7 uJy ECDFS 4 03:31:33.75 -27:48:30.0 9.5 uJy ECDFS 5 03:32:00.88 -27:58:57.0 10.0 uJy ECDFS 6 03:32:55.12 -27:58:57.0 9.3 uJy 
The images corresponding to the six individual pointings were combined to form the final mosaic image (shown in Figure 1 of the reference paper). This HEASARC table contains the catalog of 883 radio sources (Table 3 in the reference paper) and also the catalog of 49 individual components of the 17 multi-component sources (Table 4 in the reference paper), so that there are a total of 932 entries in the present table. To allow users to easily distinguish these types of entry, the HEASARC created a parameter type_flag which is set to 'S' for the 883 source entries and to 'C' for the 49 component entries. The HEASARC created names for the sources following the standard CDS and IAU recommendations for position-based names and using the prefix of '[MBF2013]' for Miller, Bonzini, Fomalont (2013), the first 3 authors and the date of publication of the reference paper. For the components, we have used the names based on the positions of the parent sources and the suffixes 'A', 'B', etc, in order of increasing J2000.0 RA. Thus, for the multi-component source [MBF2013] J033115.0-275518 which has 3 components, there are 4 entries in this table, one for the entire source, and one for each component, e.g.:
 Name | type_flag | RA (J2000.0) Dec (J2000.0) [MBF2013] J033115.0-275518 | S | 03 31 15.04 | -27 55 18.8 [MBF2013] J033115.0-275518 A| C | 03 31 13.99 | -27 55 19.9 [MBF2013] J033115.0-275518 B| C | 03 31 15.06 | -27 55 18.9 [MBF2013] J033115.0-275518 C| C | 03 31 17.05 | -27 55 15.2 
The 17 sources thought to consist of multiple components associated with a single host object are each listed with a single aggregate integrated flux density. Gaussian fits to the individual components associated
VLA Hubble Deep Field 20-cm Source Catalog
공공데이터포털
The authors have conducted a deep radio survey with the Very Large Array (VLA) at 1.4 GHz of a region containing the Hubble Deep Field (HDF). This survey overlaps previous observations at 8.5 GHz allowing them to investigate the radio spectral properties of microJansky sources to flux densities greater than 40 µJy (µJy) at 1.4 GHz and greater than 8 uJy at 8.5 GHz. A total of 371 sources have been catalogued at 1.4 GHz as part of a complete sample within 20 arcminutes of the HDF. The differential source count for this region is only marginally sub-Euclidean and is given by n(S) = (8.3 +/- 0.4) S^(-2.4 +/- 0.1) sr-1 Jy-1. Above about 100 uJy the radio source count is systematically lower in the HDF as compared to other fields. The authors conclude that there is clustering in this radio sample on size scales of 1 to 40 arcminutes. The 1.4 GHz-selected sample shows that the radio spectral indices are preferentially steep (mean spectral index of 0.85) and that the sources are moderately extended with average angular size Theta = 1.8". Optical identification with disk-type systems at z ~ 0.1 - 1 suggests that synchrotron emission, produced by supernovae remnants, is powering the radio emission in the majority of sources. In 1996 November, the authors observed a field centered on the Hubble Deep Field (RA, Dec (J2000.0) = (12h 36m 49.4s, 62o 12' 58.00") for a total of 50 hours at 20 cm in the A configuration of the VLA. They reached an rms noise level near the center of the field of 7.5 uJy. They adopted 40 uJy as the formal completeness limit over the entire 1 degree field in their untapered naturally weighted 2 arcseconds image. The authors identified 314 sources within 20 arcminutes of the field center (20% power contour). They found 57 additional sources within this same region (presumably resolved at 2" resolution) in lower resolution (3.5 and 6") tapered images above completeness levels of 50 uJy at 3.5" resolution and 75 uJy at 6" resolution, making a grand total of 371 radio sources detected at 1.4 GHz within 20 arcminutes of the phase center of the field. This table was created by the HEASARC in June 2012 based on CDS Catalog J/ApJ/533/611 file table2.dat. This is a service provided by NASA HEASARC .
VLA Subaru/XMM-Newton Deep Field 1.4-GHz Source Catalog
공공데이터포털
This table contains results from the deep radio imaging at 1.4 GHz of the 1.3-deg2 Subaru/XMM-Newton Deep Field (SXDF), made with the Very Large Array (VLA) in B and C configurations. This resulted in a radio map of the entire field, and a catalog of 505 sources covering 0.8 deg2 to a peak flux density limit of 100 microJansky (µJy), which corresponds to signal-to-noise (S/N) ratios of between 5 and 8. Robust optical identifications are provided for 90 per cent of the sources, and suggested identifications are presented for all but 14 (of which seven are optically blank, and seven are close to bright contaminating objects). The authors show that the optical properties of the radio sources do not change with flux density, suggesting that active galactic nuclei (AGN) continue to contribute significantly at faint flux densities. they test this assertion by cross-correlating their radio catalog with the X-ray source catalog and conclude that radio-quiet AGN become a significant population at flux densities below 300 uJy, and may dominate the population responsible for the flattening of the radio source counts if a significant fraction of them are Compton-thick. The SXDF was observed with NRAO's VLA in B-array using the 14 overlapping pointings arranged an an hexagonal pattern that are listed in Table 1 of the reference paper. Three test observations of pointings 1, 4 and 6 were taken on 2001 May 17, and the rest of the data were obtained in 13 runs, each lasting 4.5 hours, between 2002 August 10 and September 9. All 14 pointings were re-observed in C-array on 2003 January 15 to provide additional information on larger angular scales. This table contains the catalog of 505 detected radio sources and their proposed optical counterparts (the latter taken mostly from the ultra-deep BRíz' Suprime-Cam images of the SXDF). As mentioned above, 14 of these 505 radio sources have no suggested identifications. Additionally, 7 of the radio sources (source numbers 16, 114, 129, 263, 360, 361 and 488) have 2 listed optical identifications: in such cases, there are 2 entries for each source listed detailing the alternative optical counterparts, and with identical sets of radio parameters. Thus, there are 512 = 505 + 7 entries in this table. This table was created by the HEASARC in August 2013 based on CDS Catalog J/MNRAS/372/741 file table3.dat. This is a service provided by NASA HEASARC .
Radio-Selected Extended Chandra Deep Field South Source Catalog
공공데이터포털
In order to trace the instantaneous star formation rate (SFR) at high redshift, and thus help in understanding the relation between the different emission mechanisms related to star formation, the authors have combined the recent 4-Ms Chandra X-ray data and the deep Very Large Array radio data in the Extended Chandra Deep Field-South (E-CDF-S) region. They find 268 sources detected both in the X-ray and radio bands. The availability of redshifts for ~ 95% of the sources in their sample allows them to derive reliable luminosity estimates and the intrinsic properties from X-ray analysis for the majority of the objects. The present table lists the X-ray properties and redshifts of these 268 radio-selected sources. In the E-CDF-S area, the authors have two sets of X-ray data obtained with Chandra. The most important is a 4-Ms exposure observation resulting from the co-addition of 54 individual Chandra ACIS-I exposures from 1999 October to 2010 July, with centers spaced within a few arcseconds of RA = 03:32:28.80, Dec = -27:48:23 (J2000). The authors use the data from the new VLA program which provides deep, high-resolution 1.4-GHz imaging across the full E-CDF-S, consisting of a six-pointing mosaic of 240 h spanning 48 d of individual 5-h observations (Miller et al., 2008, ApJS, 179, 114). The E-CDF-S area has been targeted by a large number of spectroscopic surveys. For the X-ray sources, the authors use the spectroscopic redshifts published in Xue et al. (2011, ApJS, 195, 10). This table was created by the HEASARC in May 2013 based on CDS Catalog J/MNRAS/420/2190 files table2.dat and table3.dat. This is a service provided by NASA HEASARC .
VLA-COSMOS Project 1.4-GHz Joint Source Catalog
공공데이터포털
In the context of the VLA-COSMOS Deep project, additional VLA A array observations at 1.4 GHz were obtained for the central degree of the COSMOS field and combined with the existing data from the VLA-COSMOS Large project. A newly constructed Deep mosaic with a resolution of 2.5 arcseconds was used to search for sources down to 4 sigma with 1 sigma ~ 12 µJy beam-1 in the central 50' x 50'. This new catalog is combined with the catalog from the Large project (obtained at 1.5" x 1.4" resolution) to construct a new Joint catalog. All sources listed in the new Joint catalog have peak flux densities of >= 5 sigma at 1.5" and/or 2.5" resolution to account for the fact that a significant fraction of sources at these low flux levels are expected to be slightly resolved at 1.5" resolution. All properties listed in the Joint catalog, such as peak flux density, integrated flux density, and source size, are determined in the 2.5" resolution Deep image. In addition, the Joint catalog contains 43 newly identified multi-component sources. This table was created by the HEASARC in June 2010 based on the electronic version of Table 3 from the reference paper which was obtained from the ApJ web site. This is a service provided by NASA HEASARC .