데이터셋 상세
미국
ACES TRIGGERED DATA
The ALTUS Cloud Electrification Study (ACES) was based at the Naval Air Facility Key West in Florida. During August 2002, ACES researchers conducted overflights of thunderstorms over the southwestern corner of Florida. For the first time in NASA research, an uninhabited aerial vehicle (UAV) named ALTUS was used to collect cloud electrification data. Carrying field mills, optical sensors, electric field sensors and other instruments, ALTUS allowed scientists to collect cloud electrification data for the first time from above the storm, from its birth through dissipation. This experiment allowed scientists to achieve the dual goals of gathering weather data safely and testing new aircraft technology. This dataset consists of data collected from the following instruments: Slow/Fast antenna, Electric Field Mill, Optical Pulse Sensors, Searchcoil Magnetometer, Accelerometer, and Gerdien Conductivity Probe. These data were collected at 200KHz from the first 16 telemetry items collected on the aircraft, were initiated by an operator selected trigger (e.g. DOPS), and continued collecting for as long as the trigger continued.
연관 데이터
ACES CONTINUOUS DATA V1
공공데이터포털
The ALTUS Cloud Electrification Study (ACES) was based at the Naval Air Facility Key West in Florida. During August, 2002, ACES researchers conducted overflights of thunderstorms over the southwestern corner of Florida. For the first time in NASA research, an uninhabited aerial vehicle (UAV) named ALTUS was used to collect cloud electrification data. Carrying field mills, optical sensors, electric field sensors and other instruments, ALTUS allowed scientists to collect cloudelectrification data for the first time from above the storm, from its birth through dissipation. This experiment allowed scientists to achieve the dual goals of gathering weather data safely and testing new aircraft technology. This dataset consists of data collected from seven instruments: the Slow/Fast antenna, Electric Field Mill, Dual Optical Pulse Sensor, Searchcoil Magnetometer, Accelerometers, Gerdien Conductivity Probe, and the Fluxgate Magnetometer. Data consists of sensor reads at 50HZ throughout the flight from all 64 channels.
ACTIVATE King Air Meteorological and Navigational Data
공공데이터포털
ACTIVATE_MetNav_AircraftInSitu_KingAir_Data is the meteorological and navigational data collected onboard the B-200 King Air aircraft via in-situ instrumentation during the ACTIVATE project. ACTIVATE was a 5-year NASA Earth-Venture Sub-Orbital (EVS-3) field campaign. Marine boundary layer clouds play a critical role in Earth’s energy balance and water cycle. These clouds cover more than 45% of the ocean surface and exert a net cooling effect. The Aerosol Cloud meTeorology Interactions oVer the western Atlantic Experiment (ACTIVATE) project was a five-year project that provides important globally-relevant data about changes in marine boundary layer cloud systems, atmospheric aerosols and multiple feedbacks that warm or cool the climate. ACTIVATE studied the atmosphere over the western North Atlantic and sampled its broad range of aerosol, cloud and meteorological conditions using two aircraft, the UC-12 King Air and HU-25 Falcon. The UC-12 King Air was primarily used for remote sensing measurements while the HU-25 Falcon will contain a comprehensive instrument payload for detailed in-situ measurements of aerosol, cloud properties, and atmospheric state. A few trace gas measurements were also onboard the HU-25 Falcon for the measurements of pollution traces, which will contribute to airmass classification analysis. A total of 150 coordinated flights over the western North Atlantic occurred through 6 deployments from 2020-2022. The ACTIVATE science observing strategy intensively targets the shallow cumulus cloud regime and aims to collect sufficient statistics over a broad range of aerosol and weather conditions which enables robust characterization of aerosol-cloud-meteorology interactions. This strategy was implemented by two nominal flight patterns: Statistical Survey and Process Study. The statistical survey pattern involves close coordination between the remote sensing and in-situ aircraft to conduct near coincident sampling at and below cloud base as well as above and within cloud top. The process study pattern involves extensive vertical profiling to characterize the target cloud and surrounding aerosol and meteorological conditions.Marine boundary layer clouds play a critical role in Earth’s energy balance and water cycle. These clouds cover more than 45% of the ocean surface and exert a net cooling effect. The Aerosol Cloud meTeorology Interactions oVer the western Atlantic Experiment (ACTIVATE) project is a five-year project (January 2019-December 2023) that will provide important globally-relevant data about changes in marine boundary layer cloud systems, atmospheric aerosols and multiple feedbacks that warm or cool the climate. ACTIVATE studies the atmosphere over the western North Atlantic and samples its broad range of aerosol, cloud and meteorological conditions using two aircraft, the UC-12 King Air and HU-25 Falcon. The UC-12 King Air will primarily be used for remote sensing measurements while the HU-25 Falcon will contain a comprehensive instrument payload for detailed in-situ measurements of aerosol, cloud properties, and atmospheric state. A few trace gas measurements will also be onboard the HU-25 Falcon for the measurements of pollution traces, which will contribute to airmass classification analysis. A total of 150 coordinated flights over the western North Atlantic are planned through 6 deployments from 2020-2022. The ACTIVATE science observing strategy intensively targets the shallow cumulus cloud regime and aims to collect sufficient statistics over a broad range of aerosol and weather conditions which enables robust characterization of aerosol-cloud-meteorology interactions. This strategy is implemented by two nominal flight patterns: Statistical Survey and Process Study. The statistical survey pattern involves close coordination between the remote sensing and in-situ aircraft to conduct near coincident sampling at and below cloud base as well as above and within cloud top. The process study pattern
ACCLIP WB-57 Meteorological and Navigational Data
공공데이터포털
ACCLIP_MetNav_AircraftInSitu_WB57_Data is the in-situ meteorology and navigational data collection during the Asian Summer Monsoon Chemical & Climate Impact Project (ACCLIP). Data from the Meteorological Measurement System (MMS) and Diode Laser Hygrometer (DLH) is featured in this collection. Data collection for this product is complete.ACCLIP is an international, multi-organizational suborbital campaign that aims to study aerosols and chemical transport that is associated with the Asian Summer Monsoon (ASM) in the Western Pacific region from 15 July 2022 to 31 August 2022. The ASM is the largest meteorological pattern in the Northern Hemisphere (NH) during the summer and is associated with persistent convection and large anticyclonic flow patterns in the upper troposphere and lower stratosphere (UTLS). This leads to significant enhancements in the UTLS of trace species that originate from pollution or biomass burning. Convection connected to the ASM occurs over South, Southeast, and East Asia, a region with complex and rapidly changing emissions due to its high population density and economic growth. Pollution that reaches the UTLS from this region can have significant effects on the climate and chemistry of the atmosphere, making it important to have an accurate representation and understanding of ASM transport, chemical, and microphysical processes for chemistry-climate models to characterize these interactions and for predicting future impacts on climate.The ACCLIP campaign is conducted by the National Aeronautics and Space Administration (NASA) and the National Center for Atmospheric Research (NCAR) with the primary goal of investigating the impacts of Asian gas and aerosol emissions on global chemistry and climate. The NASA WB-57 and NCAR G-V aircraft are outfitted with state-of-the-art sensors to accomplish this. ACCLIP seeks to address four scientific objectives related to its main goal. The first is to investigate the transport pathways of ASM uplifted air from inside of the anticyclone to the global UTLS. Another objective is to sample the chemical content of air processed in the ASM in order to quantify the role of the ASM in transporting chemically active species and short-lived climate forcing agents to the UTLS to determine their impact on stratospheric ozone chemistry and global climate. Third, information is obtained on aerosol size, mass, and chemical composition that is necessary for determining the radiative effects of the ASM to constrain models of aerosol formation and for contrasting the organic-rich ASM UTLS aerosol population with that of the background aerosols. Last, ACCLIP seeks to measure the water vapor distribution associated with the monsoon dynamical structure to evaluate transport across the tropopause and determine the role of the ASM in water vapor transport in the stratosphere.
FIREX-AQ ER-2 In-Situ Meteorological and Navigational Data
공공데이터포털
FIREXAQ_MetNav_AircraftInSitu_ER2_Data_1 are meteorological and navigational data collected onboard the Earth Resources-2 (ER-2) aircraft during the Fire Influence on Regional to Global Environments Experiment - Air Quality (FIREX-AQ) Campaign. Completed during summer 2019, FIREX-AQ used a combination of instrumented airplanes, satellites, and ground-based instrumentation. Specifically, data was collected by the NASA Airborne Science Data Telemetry (NASDAT) System on the ER-2 platform. Data collection for this product is complete. Completed during summer 2019, FIREX-AQ utilized a combination of instrumented airplanes, satellites, and ground-based instrumentation. Detailed fire plume sampling was carried out by the NASA DC-8 aircraft, which had a comprehensive instrument payload capable of measuring over 200 trace gas species, as well as aerosol microphysical, optical, and chemical properties. The DC-8 aircraft completed 23 science flights, including 15 flights from Boise, Idaho and 8 flights from Salina, Kansas. NASA’s ER-2 completed 11 flights, partially in support of the FIREX-AQ effort. The ER-2 payload was made up of 8 satellite analog instruments and provided critical fire information, including fire temperature, fire plume heights, and vegetation/soil albedo information. NOAA provided the NOAA-CHEM Twin Otter and the NOAA-MET Twin Otter aircraft to measure chemical processing in the lofted plumes of Western wildfires. The NOAA-CHEM Twin Otter focused on nighttime plume chemistry, from which data is archived at the NASA Atmospheric Science Data Center (ASDC). The NOAA-MET Twin Otter collected measurements of air movements at fire boundaries with the goal of understanding the local weather impacts of fires and the movement patterns of fires. NOAA-MET Twin Otter data will be archived at the ASDC in the future. Additionally, a ground-based station in McCall, Idaho and several mobile laboratories provided in-situ measurements of aerosol microphysical and optical properties, aerosol chemical compositions, and trace gas species. The FIREX-AQ campaign was a NOAA/NASA interagency intensive study of North American fires to gain an understanding on the integrated impact of the fire emissions on the tropospheric chemistry and composition and to assess the satellite’s capability for detecting fires and estimating fire emissions. The overarching goal of FIREX-AQ was to provide measurements of trace gas and aerosol emissions for wildfires and prescribed fires in great detail, relate them to fuel and fire conditions at the point of emission, characterize the conditions relating to plume rise, and follow plumes downwind to understand chemical transformation and air quality impacts.
RI CPEX
공공데이터포털
The RI CPEX dataset consists of data collected from the Advanced Microwave Scanning Radiometer 2 (AMSR2), Global Precipitation Measurement Microwave Imager (GMI), and Special Sensor Microwave Imager/Sounder (SSMIS) onboard satellites measuring atmospheric and surface conditions. These data were gathered during the Convective Processes Experiment (CPEX) field campaign. CPEX collected data to help answer questions about convective storm initiation, organization, growth, and dissipation in the North Atlantic-Gulf of America-Caribbean Oceanic region during the early summer of 2017. These data files are available from May 24, 2017, through July 16, 2017, in netCDF-3 format.
ACT-America: L1 Meteorological and Aircraft Navigational Data
공공데이터포털
This dataset provides aircraft navigational parameters and related meteorological data (often referred to as "housekeeping" data) in support of the research activities for the two aircrafts that flew for the NASA Atmospheric Carbon and Transport-America (ACT-America) project. ACT-America's mission spans five years and includes five 6-week intensive field campaigns covering all 4 seasons and 3 regions of the central and eastern United States. Two instrumented aircraft platforms, the NASA Langley Beechcraft B200 King Air and the NASA Goddard Space Flight Center's C-130H Hercules, were used to collect high-quality in situ measurements across a variety of continental surfaces and atmospheric conditions. During these flights, aircraft positional, meteorological, and environmental data are recorded by a variety of instruments. For this dataset, measurements include, but are not limited to: latitude, longitude, altitude, ground speed, air temperature, and wind speed and direction. These data are incorporated into related ACT-America flight-instrumented datasets to provide geotrajectory file information for position, attitude, and altitude awareness of instrumented sampling.
NARSTO PAC2001 Langley Site Gaseous, Particle, and Meteorological Data
공공데이터포털
NARSTO_PAC2001_LANGLEY_GAS_PM_MET_DATA was obtained between August 8 and September 2, 2001 during the Pacific 2001 Air Quality Study (PAC2001).The Langley Ecole Lochiel (LEL) site was at 49.0289 N and -122.6025 W and at 90m above sea level (a.s.l). The site was surrounded by hobby farms and by relatively few country roads that are lined with both coniferous and deciduous trees, with little change in terrain heights within a radius of 15 km. Nontraditional agricultural practices, such as mushroom and chicken farming and small orchards, are common within this radius of the site. The nearest small urban center, Langley, is about 6 km north of the site. The site was approximately 10 km to the major expressways of Highway 1 in Canada and I-5 in the US and was approximately 6km to Highway 1A in Canada. Particle sampling was done in the center of an unobstructed field of approximately 30-50m2 about 2.5m from ground. On-site measurements were conducted from five temporary labs with inlets about 5m above ground. Measurements at this site, from August 13th to 31st, were intended to address the unknowns related to particles and ozone, with an emphasis on the transition from the urban mix to a suburban/rural setting, particularly the impact of agricultural sources on the particulate matter formation and evolution. Similar to the instrumentation package at Slocan Park site, the instrumentation package includes measurements in five categories.1) Measurements related to the precursors of fine PM and the oxidation environment in which the fine PM is formed. 2) Measurements related to the characterization of fine PM and the evolution process of PM.3) Measurements related to the emission of fine PM and its precursors in the valley.4) Measurements related to the mapping of fine PM horizontal and vertical distribution in the valley.5) Measurements of meteorological parameters in the valley. Measurements included detailed gas phase measurements of NOx=NOy (total and speciated), CO, O3, SO2, VOCs, OVOCs, carbonyls, NH3, HOx, and NH3 intended for a detailed understanding of the oxidation environment and chemical processes in which both O3 and secondary particulate matter are formed. Detailed measurements were made on size distributed inorganic ionic components, organic carbon, elemental carbon, and mass from 0.05 to 18 mm AD twice a day. High-time resolution measurements using a second AMS were made, measuring the size distribution of inorganic species and homologues of organic species from 0.06 to 0.7 mm. Detailed organic carbon speciation measurements, carbon isotope characterization, sulfur isotope characterization, and amorphous carbon were made for particles 2.5 mm on 10-h day samples collected twice daily. The gas-particle partitioning of semi-volatile organic compounds was studied using a Hi-cap denuder sampling system and detailed lab organic analyses. Continuous mass measurements for particles 2.5 mm were made using a tapered element oscillating microbalance (TEOM)with a diffusion dryer on the inlet. Particle number size distributions were measured from 0.01 to 3 mm using a DMA and an optical probe. Hygroscopic properties of particles were measured at two particle sizes using two DMAs in tandem. For NH3, HNO2, HNO3, HCHO, and PM 2.5 mm mass measurements and the particle chemical size distributions, more than one technique were deployed at this site. The multiple measurements of these species provided a test of the performance and validation of the different techniques and ensure that instrument biases were corrected. They also provide complementing data of different characteristics, such as better sensitivities versus time resolution. The diurnal evolution of the boundary layer height was studied using a scanning LIDAR that scanned the north, east and west quadrants. Radiation measurements, both UV and visible, were done using an Eppley and a CIMEL sun photometer. Vertical distribution of certain parameters, such as O3 and meteorological