데이터셋 상세
미국
ATTREX Global Hawk UAS Meteorological and Navigational Measurements
ATTREX-Aircraft_navigational_meteorological_Measurements are in-situ navigational and meteorological measurements collected onboard the Global Hawk Uninhabited Aerial System (UAS) during the Airborne Tropical TRopopause EXperiment (ATTREX) campaign. This collection consists of in-situ meteorological and navigational properties collected by the Meteorological Measurement System (MMS) during the 2011 and 2013 deployments over California, and 2014 deployment over Guam. Data collection is complete.Even though it is typically found in low concentrations, stratospheric water vapor has large impacts on the Earth’s climate and energy budget. Studies have suggested that even relatively small changes in stratospheric humidity may have significant climate impacts and future changes in stratospheric humidity and ozone concentration in response to a changing climate are significant climate feedbacks. Tropospheric water vapor climate feedback is typically well represented in global models. However, predictions of future changes in stratospheric humidity are highly uncertain due to gaps in our understanding of physical processes occurring in the region of the atmosphere that controls the composition of the stratosphere, the Tropical Tropopause Layer (TTL, ~13-18 km). The ability to predict future changes in stratospheric ozone are also limited due to uncertainties in the chemical composition of the TTL. In order to address these uncertainties, the Airborne Tropical Tropopause Experiment (ATTREX) was completed. Instruments during ATTREX provided measurements to trace the movement of reactive halogen-containing compounds and other important chemical species, the size and shape of cirrus cloud particles, water vapor, and winds in three dimensions through the TTL. Bromine-containing gases were measured to improve understanding of stratospheric ozone. ATTREX consisted of four NASA Global Hawk Uninhabited Aerial System (UAS) campaigns deployed from NASA’s Armstrong Flight Research Center (formally Dryden Flight Research Center). Campaigns were deployed over Edwards, CA, Guam, Hawaii, and Darwin, Australia in Boreal summer, winter, fall, and summer, respectively.
연관 데이터
ATTREX Global Hawk UAS Remote Sensing Temperature Measurements
공공데이터포털
ATTREX-Aircraft_RemoteSensing_Temperature_Measurements are remotely sensed temperature profiles collected onboard the Global Hawk Uninhabited Aerial System (UAS) during the Airborne Tropical TRopopause EXperiment (ATTREX) campaign. This collection consists of remotely sensed temperature profiles collected by the Microwave Temperature Profiler (MTP) during the 2011 and 2013 deployments over California, and 2014 deployment over Guam. Data collection is complete.Even though it is typically found in low concentrations, stratospheric water vapor has large impacts on the Earth’s climate and energy budget. Studies have suggested that even relatively small changes in stratospheric humidity may have significant climate impacts and future changes in stratospheric humidity and ozone concentration in response to a changing climate are significant climate feedbacks. Tropospheric water vapor climate feedback is typically well represented in global models. However, predictions of future changes in stratospheric humidity are highly uncertain due to gaps in our understanding of physical processes occurring in the region of the atmosphere that controls the composition of the stratosphere, the Tropical Tropopause Layer (TTL, ~13-18 km). The ability to predict future changes in stratospheric ozone are also limited due to uncertainties in the chemical composition of the TTL. In order to address these uncertainties, the Airborne Tropical Tropopause Experiment (ATTREX) was completed. Instruments during ATTREX provided measurements to trace the movement of reactive halogen-containing compounds and other important chemical species, the size and shape of cirrus cloud particles, water vapor, and winds in three dimensions through the TTL. Bromine-containing gases were measured to improve understanding of stratospheric ozone. ATTREX consisted of four NASA Global Hawk Uninhabited Aerial System (UAS) campaigns deployed from NASA’s Armstrong Flight Research Center (formally Dryden Flight Research Center). Campaigns were deployed over Edwards, CA, Guam, Hawaii, and Darwin, Australia in Boreal summer, winter, fall, and summer, respectively.
ATTREX Global Hawk UAS In-Situ Cloud Property Measurements
공공데이터포털
ATTREX-Aircraft_insitu_Cloud_property_Measurements are in-situ cloud measurements collected onboard the Global Hawk Uninhabited Aerial System (UAS) during the Airborne Tropical TRopopause EXperiment (ATTREX) campaign. This collection consists of in-situ cloud properties collected by the Hawkeye-FCDP (Hawkeye-Fast Cloud Droplet Probe) during the 2011 and 2013 deployments over California, and 2014 deployment over Guam. Data collection is complete.Even though it is typically found in low concentrations, stratospheric water vapor has large impacts on the Earth’s climate and energy budget. Studies have suggested that even relatively small changes in stratospheric humidity may have significant climate impacts and future changes in stratospheric humidity and ozone concentration in response to a changing climate are significant climate feedbacks. Tropospheric water vapor climate feedback is typically well represented in global models. However, predictions of future changes in stratospheric humidity are highly uncertain due to gaps in our understanding of physical processes occurring in the region of the atmosphere that controls the composition of the stratosphere, the Tropical Tropopause Layer (TTL, ~13-18 km). The ability to predict future changes in stratospheric ozone are also limited due to uncertainties in the chemical composition of the TTL. In order to address these uncertainties, the Airborne Tropical Tropopause Experiment (ATTREX) was completed. Instruments during ATTREX provided measurements to trace the movement of reactive halogen-containing compounds and other important chemical species, the size and shape of cirrus cloud particles, water vapor, and winds in three dimensions through the TTL. Bromine-containing gases were measured to improve understanding of stratospheric ozone. ATTREX consisted of four NASA Global Hawk Uninhabited Aerial System (UAS) campaigns deployed from NASA’s Armstrong Flight Research Center (formally Dryden Flight Research Center). Campaigns were deployed over Edwards, CA, Guam, Hawaii, and Darwin, Australia in Boreal summer, winter, fall, and summer, respectively.
ATTREX Global Hawk UAS Radiation Measurements
공공데이터포털
ATTREX-Aircraft_Radiation_Measurements are in-situ radiation measurements collected onboard the Global Hawk Uninhabited Aerial System (UAS) during the Airborne Tropical TRopopause EXperiment (ATTREX) campaign. This collection consists of in-situ radiation properties collected by the Solar Spectral Flux Radiometer (SSFR) during the 2011 and 2013 deployments over California, and 2014 deployment over Guam. Data collection is complete.Even though it is typically found in low concentrations, stratospheric water vapor has large impacts on the Earth’s climate and energy budget. Studies have suggested that even relatively small changes in stratospheric humidity may have significant climate impacts and future changes in stratospheric humidity and ozone concentration in response to a changing climate are significant climate feedbacks. Tropospheric water vapor climate feedback is typically well represented in global models. However, predictions of future changes in stratospheric humidity are highly uncertain due to gaps in our understanding of physical processes occurring in the region of the atmosphere that controls the composition of the stratosphere, the Tropical Tropopause Layer (TTL, ~13-18 km). The ability to predict future changes in stratospheric ozone are also limited due to uncertainties in the chemical composition of the TTL. In order to address these uncertainties, the Airborne Tropical Tropopause Experiment (ATTREX) was completed. Instruments during ATTREX provided measurements to trace the movement of reactive halogen-containing compounds and other important chemical species, the size and shape of cirrus cloud particles, water vapor, and winds in three dimensions through the TTL. Bromine-containing gases were measured to improve understanding of stratospheric ozone. ATTREX consisted of four NASA Global Hawk Uninhabited Aerial System (UAS) campaigns deployed from NASA’s Armstrong Flight Research Center (formally Dryden Flight Research Center). Campaigns were deployed over Edwards, CA, Guam, Hawaii, and Darwin, Australia in Boreal summer, winter, fall, and summer, respectively.
GRIP GLOBAL HAWK NAVIGATION AND HOUSEKEEPING DATA V1
공공데이터포털
The GRIP Global Hawk Navigation and Housekeeping data was collected from August 15, 2010 to September 24, 2010 during the Genesis and Rapid Intensification Processes (GRIP) field campaign. The major goal was to better understand how tropical storms form and develop into major hurricanes. The Global Hawk is an unmanned Airborne System configured with in situ and remote sensing instruments, including the Lightning Imaging Package (LIP), High Altitude Wind and Rain Profiler (HIWRAP), and High Altitude MMIC Sounding Radiometer (HAMSR). Data was collected for 7 dates and is in the IWGADTS IWG1 format. The dataset also includes XML files containing metadata documenting the parameters and their format collected during each day's flight.
HURRICANE AND SEVERE STORM SENTINEL (HS3) GLOBAL HAWK NAVIGATION V1
공공데이터포털
The Hurricane and Severe Storm Sentinel (HS3) Global Hawk Navigation dataset consists of the real-time navigation and housekeeping data that was acquired from various instruments aboard the Global Hawk including the LN-100G IMU navigation system and the Global Hawk flight computer during the HS3 campaign. The goals for HS3 included: assessing the relative roles of large-scale environment and storm-scale internal processes, and addressing the controversial role of the Saharan Air Layer (SAL) in tropical storm formation and intensification as well as the role of deep convection in the inner-core region of storms. This dataset was broadcast on the Global Hawk aircraft network by the NASDAT (NASA Airborne Science Data Acquisition and Transmission unit) as 1 Hz Universal Datagram Protocol (UDP) packets. These UDP packets were generated in IWG1 format, a type of ASCII format supported by all NASA and NCAR aircraft.