데이터셋 상세
미국
ATTREX Global Hawk UAS Radiation Measurements
ATTREX-Aircraft_Radiation_Measurements are in-situ radiation measurements collected onboard the Global Hawk Uninhabited Aerial System (UAS) during the Airborne Tropical TRopopause EXperiment (ATTREX) campaign. This collection consists of in-situ radiation properties collected by the Solar Spectral Flux Radiometer (SSFR) during the 2011 and 2013 deployments over California, and 2014 deployment over Guam. Data collection is complete.Even though it is typically found in low concentrations, stratospheric water vapor has large impacts on the Earth’s climate and energy budget. Studies have suggested that even relatively small changes in stratospheric humidity may have significant climate impacts and future changes in stratospheric humidity and ozone concentration in response to a changing climate are significant climate feedbacks. Tropospheric water vapor climate feedback is typically well represented in global models. However, predictions of future changes in stratospheric humidity are highly uncertain due to gaps in our understanding of physical processes occurring in the region of the atmosphere that controls the composition of the stratosphere, the Tropical Tropopause Layer (TTL, ~13-18 km). The ability to predict future changes in stratospheric ozone are also limited due to uncertainties in the chemical composition of the TTL. In order to address these uncertainties, the Airborne Tropical Tropopause Experiment (ATTREX) was completed. Instruments during ATTREX provided measurements to trace the movement of reactive halogen-containing compounds and other important chemical species, the size and shape of cirrus cloud particles, water vapor, and winds in three dimensions through the TTL. Bromine-containing gases were measured to improve understanding of stratospheric ozone. ATTREX consisted of four NASA Global Hawk Uninhabited Aerial System (UAS) campaigns deployed from NASA’s Armstrong Flight Research Center (formally Dryden Flight Research Center). Campaigns were deployed over Edwards, CA, Guam, Hawaii, and Darwin, Australia in Boreal summer, winter, fall, and summer, respectively.
연관 데이터
ATTREX Global Hawk UAS Remote Sensing Temperature Measurements
공공데이터포털
ATTREX-Aircraft_RemoteSensing_Temperature_Measurements are remotely sensed temperature profiles collected onboard the Global Hawk Uninhabited Aerial System (UAS) during the Airborne Tropical TRopopause EXperiment (ATTREX) campaign. This collection consists of remotely sensed temperature profiles collected by the Microwave Temperature Profiler (MTP) during the 2011 and 2013 deployments over California, and 2014 deployment over Guam. Data collection is complete.Even though it is typically found in low concentrations, stratospheric water vapor has large impacts on the Earth’s climate and energy budget. Studies have suggested that even relatively small changes in stratospheric humidity may have significant climate impacts and future changes in stratospheric humidity and ozone concentration in response to a changing climate are significant climate feedbacks. Tropospheric water vapor climate feedback is typically well represented in global models. However, predictions of future changes in stratospheric humidity are highly uncertain due to gaps in our understanding of physical processes occurring in the region of the atmosphere that controls the composition of the stratosphere, the Tropical Tropopause Layer (TTL, ~13-18 km). The ability to predict future changes in stratospheric ozone are also limited due to uncertainties in the chemical composition of the TTL. In order to address these uncertainties, the Airborne Tropical Tropopause Experiment (ATTREX) was completed. Instruments during ATTREX provided measurements to trace the movement of reactive halogen-containing compounds and other important chemical species, the size and shape of cirrus cloud particles, water vapor, and winds in three dimensions through the TTL. Bromine-containing gases were measured to improve understanding of stratospheric ozone. ATTREX consisted of four NASA Global Hawk Uninhabited Aerial System (UAS) campaigns deployed from NASA’s Armstrong Flight Research Center (formally Dryden Flight Research Center). Campaigns were deployed over Edwards, CA, Guam, Hawaii, and Darwin, Australia in Boreal summer, winter, fall, and summer, respectively.
ATTREX Global Hawk UAS Meteorological and Navigational Measurements
공공데이터포털
ATTREX-Aircraft_navigational_meteorological_Measurements are in-situ navigational and meteorological measurements collected onboard the Global Hawk Uninhabited Aerial System (UAS) during the Airborne Tropical TRopopause EXperiment (ATTREX) campaign. This collection consists of in-situ meteorological and navigational properties collected by the Meteorological Measurement System (MMS) during the 2011 and 2013 deployments over California, and 2014 deployment over Guam. Data collection is complete.Even though it is typically found in low concentrations, stratospheric water vapor has large impacts on the Earth’s climate and energy budget. Studies have suggested that even relatively small changes in stratospheric humidity may have significant climate impacts and future changes in stratospheric humidity and ozone concentration in response to a changing climate are significant climate feedbacks. Tropospheric water vapor climate feedback is typically well represented in global models. However, predictions of future changes in stratospheric humidity are highly uncertain due to gaps in our understanding of physical processes occurring in the region of the atmosphere that controls the composition of the stratosphere, the Tropical Tropopause Layer (TTL, ~13-18 km). The ability to predict future changes in stratospheric ozone are also limited due to uncertainties in the chemical composition of the TTL. In order to address these uncertainties, the Airborne Tropical Tropopause Experiment (ATTREX) was completed. Instruments during ATTREX provided measurements to trace the movement of reactive halogen-containing compounds and other important chemical species, the size and shape of cirrus cloud particles, water vapor, and winds in three dimensions through the TTL. Bromine-containing gases were measured to improve understanding of stratospheric ozone. ATTREX consisted of four NASA Global Hawk Uninhabited Aerial System (UAS) campaigns deployed from NASA’s Armstrong Flight Research Center (formally Dryden Flight Research Center). Campaigns were deployed over Edwards, CA, Guam, Hawaii, and Darwin, Australia in Boreal summer, winter, fall, and summer, respectively.
ATTREX Global Hawk UAS In-Situ Cloud Property Measurements
공공데이터포털
ATTREX-Aircraft_insitu_Cloud_property_Measurements are in-situ cloud measurements collected onboard the Global Hawk Uninhabited Aerial System (UAS) during the Airborne Tropical TRopopause EXperiment (ATTREX) campaign. This collection consists of in-situ cloud properties collected by the Hawkeye-FCDP (Hawkeye-Fast Cloud Droplet Probe) during the 2011 and 2013 deployments over California, and 2014 deployment over Guam. Data collection is complete.Even though it is typically found in low concentrations, stratospheric water vapor has large impacts on the Earth’s climate and energy budget. Studies have suggested that even relatively small changes in stratospheric humidity may have significant climate impacts and future changes in stratospheric humidity and ozone concentration in response to a changing climate are significant climate feedbacks. Tropospheric water vapor climate feedback is typically well represented in global models. However, predictions of future changes in stratospheric humidity are highly uncertain due to gaps in our understanding of physical processes occurring in the region of the atmosphere that controls the composition of the stratosphere, the Tropical Tropopause Layer (TTL, ~13-18 km). The ability to predict future changes in stratospheric ozone are also limited due to uncertainties in the chemical composition of the TTL. In order to address these uncertainties, the Airborne Tropical Tropopause Experiment (ATTREX) was completed. Instruments during ATTREX provided measurements to trace the movement of reactive halogen-containing compounds and other important chemical species, the size and shape of cirrus cloud particles, water vapor, and winds in three dimensions through the TTL. Bromine-containing gases were measured to improve understanding of stratospheric ozone. ATTREX consisted of four NASA Global Hawk Uninhabited Aerial System (UAS) campaigns deployed from NASA’s Armstrong Flight Research Center (formally Dryden Flight Research Center). Campaigns were deployed over Edwards, CA, Guam, Hawaii, and Darwin, Australia in Boreal summer, winter, fall, and summer, respectively.
Airborne Multi-angle Imaging SpectroRadiometer (AirMISR) Data from the Wisconsin 2000 Campaign
공공데이터포털
The AIRMISR_WISCONSIN_2000 data were acquired during a field mission which overflew Wisconsin and the Atmospheric Radiation Measurement/Program Cloud And Radiation Testbed (ARM/CART) site in Oklahoma on March 3, 2000. The Jet Propulsion Laboratory (JPL) in Pasadena, California provided the data. The Airborne Multi-angle Imaging SpectroRadiometer (AirMISR) is an airborne instrument for obtaining multi-angle imagery similar to that of the satellite-borne Multi-angle Imaging SpectroRadiometer (MISR) instrument, which is designed to contribute to studies of the Earth's ecology and climate. AirMISR flies on the NASA ER-2 aircraft. The Jet Propulsion Laboratory in Pasadena, California built the instrument for NASA. Unlike the satellite-borne MISR instrument, which has nine cameras oriented at various angles, AirMISR uses a single camera in a pivoting gimbal mount. A data run by the ER-2 aircraft is divided into nine segments, each with the camera positioned to a MISR look angle. The gimbal rotates between successive segments, such that each segment acquires data over the same area on the ground as the previous segment. This process is repeated until all nine angles of the target area are collected. The swath width, which varies from 11 km in the nadir to 32 km at the most oblique angle, is governed by the camera's instantaneous field-of-view of 7 meters cross-track x 6 meters along-track in the nadir view and 21 meters x 55 meters at the most oblique angle. The along-track image length at each angle is dictated by the timing required to obtain overlap imagery at all angles, and varies from about 9 km in the nadir to 26 km at the most oblique angle. Thus, the nadir image dictates the area of overlap that is obtained from all nine angles. A complete flight run takes approximately 13 minutes. The 9 camera viewing angles are: 0 degrees or nadir 26.1 degrees, fore and aft 45.6 degrees, fore and aft 60.0 degrees, fore and aft 70.5 degrees, fore and aft. For each of the camera angles, images are obtained at 4 spectral bands. The spectral bands can be used to identify vegetation and aerosols, estimate surface reflectance and for ocean color studies. The center wavelengths of the 4 spectral bands are: 443 nanometers, blue 555 nanometers, green 670 nanometers, red 865 nanometers, near-infrared. Two types of AirMISR data products are available - the Level 1 Radiometric product (L1B1) and the Level 1 Georectified radiance product (L1B2).
Airborne Multi-angle Imaging SpectroRadiometer (AirMISR) Data from the Howland 2003 Campaign
공공데이터포털
The AIRMISR_HOWLAND_2003 data were acquired during a field mission which overflew Howland Forest, Maine on August 28, 2003. The Jet Propulsion Laboratory (JPL) in Pasadena, California provided the data. The Airborne Multi-angle Imaging SpectroRadiometer (AirMISR) is an airborne instrument for obtaining multi-angle imagery similar to that of the satellite-borne Multi-angle Imaging SpectroRadiometer (MISR) instrument, which is designed to contribute to studies of the Earth's ecology and climate. AirMISR flies on the NASA ER-2 aircraft. The Jet Propulsion Laboratory in Pasadena, California built the instrument for NASA. Unlike the satellite-borne MISR instrument, which has nine cameras oriented at various angles, AirMISR uses a single camera in a pivoting gimbal mount. A data run by the ER-2 aircraft is divided into nine segments, each with the camera positioned to a MISR look angle. The gimbal rotates between successive segments, such that each segment acquires data over the same area on the ground as the previous segment. This process is repeated until all nine angles of the target area are collected. The swath width, which varies from 11 km in the nadir to 32 km at the most oblique angle, is governed by the camera's instantaneous field-of-view of 7 meters cross-track x 6 meters along-track in the nadir view and 21 meters x 55 meters at the most oblique angle. The along-track image length at each angle is dictated by the timing required to obtain overlap imagery at all angles, and varies from about 9 km in the nadir to 26 km at the most oblique angle. Thus, the nadir image dictates the area of overlap that is obtained from all nine angles. A complete flight run takes approximately 13 minutes. The 9 camera viewing angles are: 0 degrees or nadir 26.1 degrees, fore and aft 45.6 degrees, fore and aft 60.0 degrees, fore and aft 70.5 degrees, fore and aft. For each of the camera angles, images are obtained at 4 spectral bands. The spectral bands can be used to identify vegetation and aerosols, estimate surface reflectance and for ocean color studies. The center wavelengths of the 4 spectral bands are: 443 nanometers, blue 555 nanometers, green 670 nanometers, red 865 nanometers, near-infrared. Two types of AirMISR data products are available - the Level 1 Radiometric product (L1B1) and the Level 1 Georectified radiance product (L1B2).
Satellite AVHRR Extracted Data (FIFE)
공공데이터포털
The Advanced Very High Resolution Radiometer (AVHRR) is a four- or five-channel scanning radiometer capable of providing global daytime and nighttime sea-surface temperature and information about ice, snow, and clouds. The sensor measures emitted and reflected radiation in five channels (bands) of the electromagnetic spectrum. The Site Average Reflectances Extracted from AVHRR-LAC Imagery Data Set consists of averages of pixel extracts from AVHRR-LAC (1 km resolution) scenes that overlay the FIFE site. Average radiances for dates are available for the five sensor wavebands and average reflectance and exoatmospheric reflectances are available for wavebands 1 and 2. Site averages are clustered in 1987 and during the summer of 1989. Some data are also available for early 1988. The AVHRR is capable of operating in both real-time or recorded modes. Direct readout data were transmitted to ground stations of the automatic picture transmission (APT) class at low-resolution (4x4 km) and to ground stations of the high-resolution picture transmission (HRPT) class at high resolution (1x1 km). Data recorded on board were available for processing in the NOAA Central Computer Facility. They included local area coverage (LAC) data which were from selected portions of each orbit with a 1x1 km resolution. The precision of satellite remote sensing estimates of surface reflectance (Hall et al., 1992), calibrated and corrected for atmospheric effects, was no worse than about 1 percent absolute.