DISCOVER-AQ Maryland Deployment UC-12 Aircraft Remotely Sensed High Spectral Resolution Lidar (HSRL) Data
공공데이터포털
DISCOVERAQ_Maryland_AircraftRemoteSensing_UC12_HSRL_Data contains remotely sensed data collected by the High Spectral Resolution Lidar (HSRL) onboard NASA's UC-12 aircraft during the Maryland deployment of NASA's DISCOVER-AQ field study. This data product contains data for only the Maryland deployment and data collection is complete.Understanding the factors that contribute to near surface pollution is difficult using only satellite-based observations. The incorporation of surface-level measurements from aircraft and ground-based platforms provides the crucial information necessary to validate and expand upon the use of satellites in understanding near surface pollution. Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) was a four-year campaign conducted in collaboration between NASA Langley Research Center, NASA Goddard Space Flight Center, NASA Ames Research Center, and multiple universities to improve the use of satellites to monitor air quality for public health and environmental benefit. Through targeted airborne and ground-based observations, DISCOVER-AQ enabled more effective use of current and future satellites to diagnose ground level conditions influencing air quality.DISCOVER-AQ employed two NASA aircraft, the P-3B and King Air, with the P-3B completing in-situ spiral profiling of the atmosphere (aerosol properties, meteorological variables, and trace gas species). The King Air conducted both passive and active remote sensing of the atmospheric column extending below the aircraft to the surface. Data from an existing network of surface air quality monitors, AERONET sun photometers, Pandora UV/vis spectrometers and model simulations were also collected. Further, DISCOVER-AQ employed many surface monitoring sites, with measurements being made on the ground, in conjunction with the aircraft. The B200 and P-3B conducted flights in Baltimore-Washington, D.C. in 2011, Houston, TX in 2013, San Joaquin Valley, CA in 2013, and Denver, CO in 2014. These regions were targeted due to being in violation of the National Ambient Air Quality Standards (NAAQS).The first objective of DISCOVER-AQ was to determine and investigate correlations between surface measurements and satellite column observations for the trace gases ozone (O3), nitrogen dioxide (NO2), and formaldehyde (CH2O) to understand how satellite column observations can diagnose surface conditions. DISCOVER-AQ also had the objective of using surface-level measurements to understand how satellites measure diurnal variability and to understand what factors control diurnal variability. Lastly, DISCOVER-AQ aimed to explore horizontal scales of variability, such as regions with steep gradients and urban plumes.
TRACER-AQ JSC G-V Aircraft Remotely Sensed High Spectral Resolution Lidar-2 (HSRL-2) Data
공공데이터포털
TRACERAQ_AircraftRemoteSensing_GV_HSRL2_Data is the remotely sensed High Spectral Resolution Lidar-2 (HSRL-2) data collected onboard the Johnson Space Center (JSC) Gulfstream V (G-V) aircraft during the TRacking Aerosol Convection ExpeRiment – Air Quality (TRACER-AQ) field study. Data collection is complete.The TRacking Aerosol Convection ExpeRiment – Air Quality (TRACER-AQ) campaign is a field study co-sponsored by NASA and TCEQ (Texas Commission on Environmental Quality), with partners from DOE (Department of Energy) TRacking Aerosol Convection ExpeRiment (TRACER), and several academic institutions. This synergistic effort aims to gain an updated understanding in photochemistry and meteorological impact on ozone formation in the Houston region, particularly around the Houston Ship Channel, Galveston Bay, and the Gulf of America; and provide observations for evaluating air quality models and satellite observations.The primary TRACER-AQ field observations period lasted from mid-August to late September 2021, coinciding with the peak ozone season in East Texas, with a second deployment in summer 2022 with a subset of ground-based assets. The observing system includes airborne remote sensing, mobile (boat/vehicle) laboratories, and stationary ground-based assets.The airborne component was based on the NASA Gulfstream V aircraft instrumented with GCAS (GEOCAPE Airborne Simulator) for making measurements of column NO2 and HCHO as well as a lidar system, HSRL-2 (High Spectral Resolution Lidar-2), to measure O3 and aerosol vertical profiles over the course of 12 flight days. Ground-based assets include ground-based ozone lidars from the Tropospheric Ozone Lidar Network (TOLNet), ceilometers, Pandora spectrometers, AErosol RObotic NETwork (AERONET) remote sensors, ozonesondes, and stationary and mobile laboratories of in situ air quality and meteorological observations. This coordinated observing system provides updated or unseen perspectives in spatial and temporal distribution of the key photochemical species and atmospheric structure information, particularly with a focus on the temporal evolution of observations throughout the daytime in preparation for upcoming geostationary satellite air quality observations.
LMOS UC-12 Aircraft Remote Sensing Data
공공데이터포털
LMOS_AircraftRemoteSensing_UC12_Data_1 is the Lake Michigan Ozone Study (LMOS) remote sensing data collected onboard the NASA UC-12 aircraft during the LMOS field campaign. This product is a result of a joint effort across multiple agencies, including NASA, NOAA, the EPA, Electric Power Research Institute (EPRI), National Science Foundation (NSF), Lake Michigan Air Directors Consortium (LADCO) and its member states, and several research groups at universities. Data collection is complete.Elevated spring and summertime ozone levels remain a challenge along the coast of Lake Michigan, with a number of monitors exceeding the 2015 National Ambient Air Quality Standards (NAAQS) for ozone. The production of ozone over Lake Michigan, combined with onshore daytime “lake breeze” airflow is believed to increase ozone concentrations at locations within a few kilometers off shore. This observed lake-shore gradient motivated the Lake Michigan Ozone Study (LMOS). Conducted from May through June 2017, the goal of LMOS was to better understand ozone formation and transport around Lake Michigan; in particular, why ozone concentrations are generally highest along the lakeshore and drop off sharply inland and why ozone concentrations peak in rural areas far from major emission sources. LMOS was a collaborative, multi-agency field study that provided extensive observational air quality and meteorology datasets through a combination of airborne, ship, mobile laboratories, and fixed ground-based observational platforms. Chemical transport models (CTMs) and meteorological forecast tools assisted in planning for day-to-day measurement strategies. The long term goals of the LMOS field study were to improve modeled ozone forecasts for this region, better understand ozone formation and transport around Lake Michigan, provide a better understanding of the lakeshore gradient in ozone concentrations (which could influence how the Environmental Protection Agency (EPA) addresses future regional ozone issues), and provide improved knowledge of how emissions influence ozone formation in the region.
Lidar Atmospheric Sensing Experiment (LASE) Data Obtained During the Convection And Moisture Experiment (CAMEX-3)
공공데이터포털
LASE_CAMEX3 data are Lidar Atmospheric Sensing Experiment water vapor and aerosol data measurements taken during the 3rd Convection and Moisture Experiment (CAMEX3).LASE (Lidar Atmospheric Sensing Experiment) is an airborne autonomous DIAL system developed to measure water vapor and aerosol profiles. The Convection And Moisture EXperiment (CAMEX-3) campaign was based at Patrick Air Force Base, Florida from 6 August - 23 September, 1998. CAMEX-3 successfully studied Hurricanes Bonnie, Danielle, Earl and Georges. CAMEX-3 collected data for research in tropical cyclone development, tracking, intensification, and landfalling impacts using NASA-funded aircraft and surface remote sensing instrumentation.The CAMEX-3 study yields high spatial and temporal information of hurricane structure, dynamics, and motion. The LASE instrument's purpose in this experiment is to characterize the hurricane environment using water vapor and aerosol measurements for use as input to models and assimilation schemes and to fill in sonde data voids.
NAMMA LIDAR ATMOSPHERIC SENSING EXPERIMENT (LASE) V1
공공데이터포털
The NAMMA Lidar Atmospheric Sensing Experiment (LASE) dataset used the LASE system using the Differential Absorption Lidar (DIAL) system was operated during the NASA African Monsoon Multidisciplinary Analyses (NAMMA) campaign to gather water vapor mixing ratio and aerosol scattering ratio (815 nm) profiles. Other derived parameters include: relative humidity, equivalent potential temperature, virtual potential temperature, precipitable water vapor profiles, aerosol backscatter, aerosol extinction, and aerosol optical thickness profiles (815 nm). Aerosol data are reported as atmospheric scattering ratios on a logarithmic scale. Water vapor data are reported as mixing ratios (g/kg) on both a linear and logarithmic scale. LASE was operated from the NASA DC-8 aircraft during 14 NAMMA campaign flights between August 15 and September 12, 2006.
LISTOS NASA Aircraft Remote Sensing Data
공공데이터포털
LISTOS_AircraftRemoteSensing_NASAAircraft_Data is the Long Island Sound Tropospheric Ozone Study (LISTOS) remote sensing data collected onboard the NASA aircraft during the LISTOS field campaign. This product is a result of a joint effort across multiple agencies, including NASA, NOAA, the EPA Northeast States for Coordinated Air Use Management (NESCAUM), Maine Department of Environmental Protection, New Jersey Department of Environmental Protection, New York State Department of Environmental Conservation and several research groups at universities. Data collection is complete.The New York City (NYC) metropolitan area (comprised of portions of New Jersey, New York, and Connecticut in and around NYC) is home to over 20 million people, but also millions of people living downwind in neighboring states. This area continues to persistently have challenges meeting past and recently revised federal health-based air quality standards for ground-level ozone, which impacts the health and well-being of residents living in the area. A unique feature of this chronic ozone problem is the pollution transported in a northeast direction out of NYC over Long Island Sound. The relatively cool waters of Long Island Sound confine the pollutants in a shallow and stable marine boundary layer. Afternoon heating over coastal land creates a sea breeze that carries the air pollution inland from the confined marine layer, resulting in high ozone concentrations in Connecticut and, at times, farther east into Rhode Island and Massachusetts. To investigate the evolving nature of ozone formation and transport in the NYC region and downwind, Northeast States for Coordinated Air Use Management (NESCAUM) launched the Long Island Sound Tropospheric Ozone Study (LISTOS). LISTOS was a multi-agency collaborative study focusing on Long Island Sound and the surrounding coastlines that continually suffer from poor air quality exacerbated by land/water circulation. The primary measurement observations took place between June-September 2018 and include in-situ and remote sensing instrumentation that were integrated aboard three aircraft, a network of ground sites, mobile vehicles, boat measurements, and ozonesondes. The goal of LISTOS was to improve the understanding of ozone chemistry and sea breeze transported pollution over Long Island Sound and its coastlines. LISTOS also provided NASA the opportunity to test air quality remote sensing retrievals with the use of its airborne simulators (GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator (GCAS), and Geostationary Trace gas and Aerosol Sensory Optimization (GeoTASO)) for the preparation of the Tropospheric Emissions; Monitoring of Pollution (TEMPO) observations for monitoring air quality from space. LISTOS also helped collaborators in the validation of Tropospheric Monitoring Instrument (TROPOMI) science products, with use of airborne- and ground-based measurements of ozone, NO2, and HCHO.
TRACE-P DC-8 Remotely Sensed Differential Absorption Lidar (DIAL) Data
공공데이터포털
TRACE-P_AircraftRemoteSensing_DC8_DIAL_Data is the remotely sensed Differential Absorption Lidar (DIAL) data collected onboard the DC-8 aircraft during the Transport and Chemical Evolution over the Pacific (TRACE-P) suborbital campaign. Data collection for this product is complete.The NASA TRACE-P mission was a part of NASA’s Global Tropospheric Experiment (GTE) – an assemblage of missions conducted from 1983-2001 with various research goals and objectives. TRACE-P was a multi-organizational campaign with NASA, the National Center for Atmospheric Research (NCAR), and several US universities. TRACE-P deployed its payloads in the Pacific between the months of March and April 2001 with the goal of studying the air chemistry emerging from Asia to the western Pacific. Along with this, TRACE-P had the objective studying the chemical evolution of the air as it moved away from Asia. In order to accomplish its goals, the NASA DC-8 aircraft and NASA P-3B aircraft were deployed, each equipped with various instrumentation. TRACE-P also relied on ground sites, and satellites to collect data. The DC-8 aircraft was equipped with 19 instruments in total while the P-3B boasted 21 total instruments. Some instruments on the DC-8 include the Nephelometer, the GCMS, the Nitric Oxide Chemiluminescence, the Differential Absorption Lidar (DIAL), and the Dual Channel Collectors and Fluorometers, HPLC. The Nephelometer was utilized to gather data on various wavelengths including aerosol scattering (450, 550, 700nm), aerosol absorption (565nm), equivalent BC mass, and air density ratio. The GCMS was responsible for capturing a multitude of compounds in the atmosphere, some of which include CH4, CH3CHO, CH3Br, CH3Cl, CHBr3, and C2H6O. DIAL was used for a variety of measurements, some of which include aerosol wavelength dependence (1064/587nm), IR aerosol scattering ratio (1064nm), tropopause heights and ozone columns, visible aerosol scattering ratio, composite tropospheric ozone cross-sections, and visible aerosol depolarization. Finally, the Dual Channel Collectors and Fluorometers, HPLC collected data on H2O2, CH3OOH, and CH2O in the atmosphere. The P-3B aircraft was equipped with various instruments for TRACE-P, some of which include the MSA/CIMS, the Non-dispersive IR Spectrometer, the PILS-Ion Chromatograph, and the Condensation particle counter and Pulse Height Analysis (PHA). The MSA/CIMS measured OH, H2SO4, MSA, and HNO3. The Non-dispersive IR Spectrometer took measurements on CO2 in the atmosphere. The PILS-Ion Chromatograph recorded measurements of compounds and elements in the atmosphere, including sodium, calcium, potassium, magnesium, chloride, NH4, NO3, and SO4. Finally, the Condensation particle counter and PHA was used to gather data on total UCN, UCN 3-8nm, and UCN 3-4nm. Along with the aircrafts, ground stations measured air quality from China along with C2H2, C2H6, CO, and HCN. Finally, satellites imagery was used to collect a multitude of data, some of the uses were to observe the history of lightning flashes, SeaWiFS cloud imagery, 8-day exposure to TOMS aerosols, and SeaWiFS aerosol optical thickness. The imagery was used to best aid in planning for the aircraft deployment.