CPEX-CV Dropsonde Data
공공데이터포털
CPEXCV-Dropsondes_1 is the dropsonde data files collected during the Convective Processes Experiment - Cabo Verde (CPEX-CV). Data collection for this product is complete.Seeking to better understand atmospheric processes in regions with little data, the Convective Processes Experiment – Cabo Verde (CPEX-CV) campaign conducted by NASA is a continuation of the CPEX – Aerosols & Winds (CPEX-AW) campaign that took place between August to September 2021. The campaign will take place between 1-30 September 2022 and will operate out of Sal Island, Cabo Verde with the primary goal of investigating atmospheric dynamics, marine boundary layer properties, convection, the dust-laden Saharan Air Layer, and their interactions across various spatial scales to improve understanding and predictability of process-level lifecycles in the data-sparse tropical East Atlantic region.CPEX-CV will work towards its goal by addressing four main science objectives. The first goal is to improve understanding of the interaction between large-scale environmental forcings such as the Intertropical Convergence Zone (ITCZ), Saharan Air Layer, African easterly waves, and mid-level African easterly jet, and the lifecycle and properties of convective cloud systems, including tropical cyclone precursors, in the tropical East Atlantic region. Next, observations will be made about how local kinematic and thermodynamic conditions, including the vertical structure and variability of the marine boundary layer, relate to the initiation and lifecycle of convective cloud systems and their processes. Third, CPEX-CV will investigate how dynamical and convective processes affect size dependent Saharan dust vertical structure, long-range Saharan dust transport, and boundary layer exchange pathways. The last objective will be to assess the impact of CPEX-CV observations of atmospheric winds, thermodynamics, clouds, and aerosols on the prediction of tropical Atlantic weather systems and validate and interpret spaceborne remote sensors that provide similar measurements.To achieve these objectives, the NASA DC-8 aircraft will be deployed with remote sensing instruments and dropsondes that will allow for the measurement of tropospheric aerosols, winds, temperature, water vapor, and precipitation. Instruments onboard the aircraft include the Airborne Third Generation Precipitation Radar (APR-3), lidars such as the Doppler Aerosol WiNd Lidar (DAWN), High Altitude Lidar Observatory (HALO), High Altitude Monolithic Microwave Integrated Circuit (MMIC) Sounding Radiometer (HAMSR), Advanced Vertical Atmospheric Profiling System (AVAPS) dropsonde system, Cloud Aerosol and Precipitation Spectrometer (CAPS), and the Airborne In-situ and Radio Occultation (AIRO) instrument. Measurements taken by CPEX-CV will assist in moving science forward from previous CPEX and CPEX-AW missions, the calibration and validation of satellite measurements, and the development of airborne sensors, especially those with potential for satellite deployment.
The RI CPEX dataset consists of data collected from the Advanced Microwave Scanning Radiometer 2 (AMSR2), Global Precipitation Measurement Microwave Imager (GMI), and Special Sensor Microwave Imager/Sounder (SSMIS) onboard satellites measuring atmospheric and surface conditions. These data were gathered during the Convective Processes Experiment (CPEX) field campaign. CPEX collected data to help answer questions about convective storm initiation, organization, growth, and dissipation in the North Atlantic-Gulf of America-Caribbean Oceanic region during the early summer of 2017. These data files are available from May 24, 2017, through July 16, 2017, in netCDF-3 format.
GRIP DC-8 DROPSONDE V3
공공데이터포털
The GRIP DC-8 Dropsonde V3 dataset consists of atmospheric pressure, dry-bulb temperature, dew point temperature, relative humidity, wind direction, wind speed, and fall rate measurements taken during 16 research flights during the Genesis and Rapid Intensification Processes (GRIP) campaign from August 17, 2010 to September 22, 2010. The GRIP campaign was conducted to better understand how tropical storms form and how these storms develop into major hurricanes. The DC-8 Airborne Vertical Atmospheric Profiling System (AVAPS) deploys integrated, highly accurate, GPS-located atmospheric profiling dropsondes to measure and record current atmospheric conditions in a vertical column below the aircraft. The dropsondes are ejected from a tube in the underside of the DC-8 aircraft. As the dropsonde descends to the surface via a parachute, it continuously measures and transmits data to the aircraft using a 400 MHz meteorological band telemetry link. Pressure, temperature and relative humidity, as well as GPS-based wind data were collected from 328 dropsondes. These Dropsonde data are in ASCII-csv file format.
PEM West A Ground Data
공공데이터포털
PEM-West-A_Ground_Data is the ground site data collected during the Pacific Exploratory Mission (PEM) West A suborbital campaign. Data utilizing the Nondispersive Infrared Gas Analyzer (NDIR) and chemiluminescence technique are featured in this collection. Data collection for this product is complete.During 1983-2001, NASA conducted a collection of field campaigns as a part of the Global Tropospheric Experiment (GTE) for developing advanced instrumentation to quantify atmospheric trace gases’ sources, sinks, and distribution. Among those was PEM, which intended to improve the scientific understanding of human influence on tropospheric chemistry. Part of the PEM field campaigns (PEM-West) were conducted over the northwestern Pacific region, considered the only major region in the northern hemisphere that is “relatively” free from direct anthropogenic influences. PEM-West was a part of the East Asian/North Pacific Regional Study (APARE). The overarching objectives of PEM-West were 1) to investigate the atmospheric chemistry of ozone (O3) and its precursors over the northwestern Pacific, including the examination of their natural budgets as well as the impact of anthropogenic sources; and 2) to investigate the atmospheric sulfur cycle over the region with emphasis on the relative importance and influence of continental vs marine sulfur sources. The two phases of PEM-West were conducted during differing seasons due to contrasting tropospheric outflow from Asia. The first phase, PEM-West A, was conducted over the western Pacific region off the eastern coast of Asia from September-October 1991, a season characterized by the predominance of flow from mid-Pacific regions. The second phase, PEM-West B, was conducted from February-March 1994, a period characterized by maximum air mass outflow. To accomplish its objectives, the PEM-West campaign deployed the NASA DC-8 aircraft across the northwestern Pacific to gather latitudinal, longitudinal, and vertical profile sampling, as well as extensive sampling in both the marine boundary layer and free troposphere. The aircraft was equipped with a comprehensive suite of in-situ instrument packages for characterization of photochemical precursors, intermediate products, and airmass tracers, including O3, nitric oxide (NO), peroxyacetyl nitrate (PAN), nitrogen oxides (NOy), nonmethane hydrocarbons (NMHCs), hydrogen peroxide (H2O2), acetic acid (CH3OOH), carbon monoxide (CO), and formaldehyde (CH2O). Collectively, these measurements enabled the analyses of the photochemical production/destruction of O3 and the distribution of precursor species. In addition, the DC-8 was equipped with instruments for collecting sulfur measurements, including dimethyl sulfide (DMS), carbonyl sulfide (COS), sulfur dioxide (SO2), and carbon disulfide (CS2). Instruments that collected aerosol composition and microphysical properties were also aboard the DC-8. Both missions deployed a Differential Absorption Lidar (DIAL) system for measurements of O3 vertical profiles above and below the aircraft. One highlight of the project was that flight nine of PEM-West A flew over Typhoon Mireille while it made landfall on the coast of Japan. This allowed for a flight by the DC-8 to study the role of typhoons in the transport of trace gases. Detailed descriptions related to the motivation, implementation, and instrument payloads are available in the PEM-West A overview paper and the PEM-West B overview paper. A collection of the publications based on PEM-West A and B observation are available in the Journal of Geophysical Research special issues: Pacific Exploratory Mission-West Phase A and Pacific Exploratory Mission-West, Phase B (PEM-West B).
The AAMH CPEX dataset contains products obtained from the MetOp-A, MetOp-B, NOAA-18, and NOAA-19 satellites. These data were collected in support of the NASA Convective Processes Experiment (CPEX) field campaign. The CPEX field campaign took place in the North Atlantic-Gulf of America-Caribbean Sea region from 25 May to 25 June 2017. CPEX conducted a total of sixteen DC-8 missions from 27 May to 24 June. The CPEX campaign collected data to help explain convective storm initiation, organization, growth, and dissipation in the North Atlantic-Gulf of America-Caribbean Oceanic region during the early summer of 2017. These data are available from May 26, 2017, through July 15, 2017, and are available in netCDF-4 format.
Aeolus CalVal Dropsonde Profiles
공공데이터포털
Aeolus-CalVal-Dropsondes_DC8_1 is the Aeolus CalVal Dropsonde Profiles data product. Data was collected using Dropsondes from the Douglas (DC-8) Aircraft. Data collection for this product is complete. NASA conducted an airborne campaign from 17 April to 30 April 2019 to: 1) demonstrate the performance of the Doppler Aerosol WiNd Lidar (DAWN) and High Altitude Lidar Observatory (HALO) instruments across a range of aerosol, cloud, and weather conditions; 2) compare these measurements with the European Space Agency Aeolus mission to gain an initial perspective of Aeolus performance in preparation for a future international Aeolus Cal/Val airborne campaign; and 3) demonstrate how weather processes can be resolved and better understood through simultaneous airborne wind, water vapor (WV), and aerosol profile observations, coupled with numerical model and other remote sensing observations. Five NASA DC-8 aircraft flights, comprising 46 flight hours, were conducted over the Eastern Pacific and Southwest U.S., based out of NASA Armstrong Flight Research Center in Palmdale, CA and Kona, HI. Yankee Environmental Systems, Inc High Definition Sounding System (HDSS) eXpendable Digitial Dropsondes (XDD) were used to validate the DAWN and Aeolus wind observations. The LaRC Diode Laser Hygrometer instrument, which was integrated on the DC-8 in preparation for another NASA airborne campaign, provided in-situ WV measurements used during one flight to validate HALO and dropsonde WV profile products.
FIREX-AQ DC8 In-Situ Meteorological and Navigational Data
공공데이터포털
FIREXAQ_MetNav_AircraftInSitu_DC8_Data are in-situ meteorological and navigational data collected onboard the DC-8 aircraft during FIREX-AQ. This product features the navigational information for the DC-8 aircraft, along with data collected by the MMS, LGR, and DLH. Data collection for this product is complete. Completed during summer 2019, FIREX-AQ utilized a combination of instrumented airplanes, satellites, and ground-based instrumentation. Detailed fire plume sampling was carried out by the NASA DC-8 aircraft, which had a comprehensive instrument payload capable of measuring over 200 trace gas species, as well as aerosol microphysical, optical, and chemical properties. The DC-8 aircraft completed 23 science flights, including 15 flights from Boise, Idaho and 8 flights from Salina, Kansas. NASA’s ER-2 completed 11 flights, partially in support of the FIREX-AQ effort. The ER-2 payload was made up of 8 satellite analog instruments and provided critical fire information, including fire temperature, fire plume heights, and vegetation/soil albedo information. NOAA provided the NOAA-CHEM Twin Otter and the NOAA-MET Twin Otter aircraft to measure chemical processing in the lofted plumes of Western wildfires. The NOAA-CHEM Twin Otter focused on nighttime plume chemistry, from which data is archived at the NASA Atmospheric Science Data Center (ASDC). The NOAA-MET Twin Otter collected measurements of air movements at fire boundaries with the goal of understanding the local weather impacts of fires and the movement patterns of fires. NOAA-MET Twin Otter data will be archived at the ASDC in the future. Additionally, a ground-based station in McCall, Idaho and several mobile laboratories provided in-situ measurements of aerosol microphysical and optical properties, aerosol chemical compositions, and trace gas species. The Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) campaign was a NOAA/NASA interagency intensive study of North American fires to gain an understanding on the integrated impact of the fire emissions on the tropospheric chemistry and composition and to assess the satellite’s capability for detecting fires and estimating fire emissions. The overarching goal of FIREX-AQ was to provide measurements of trace gas and aerosol emissions for wildfires and prescribed fires in great detail, relate them to fuel and fire conditions at the point of emission, characterize the conditions relating to plume rise, and follow plumes downwind to understand chemical transformation and air quality impacts.
ACCLIP WB-57 Meteorological and Navigational Data
공공데이터포털
ACCLIP_MetNav_AircraftInSitu_WB57_Data is the in-situ meteorology and navigational data collection during the Asian Summer Monsoon Chemical & Climate Impact Project (ACCLIP). Data from the Meteorological Measurement System (MMS) and Diode Laser Hygrometer (DLH) is featured in this collection. Data collection for this product is complete.ACCLIP is an international, multi-organizational suborbital campaign that aims to study aerosols and chemical transport that is associated with the Asian Summer Monsoon (ASM) in the Western Pacific region from 15 July 2022 to 31 August 2022. The ASM is the largest meteorological pattern in the Northern Hemisphere (NH) during the summer and is associated with persistent convection and large anticyclonic flow patterns in the upper troposphere and lower stratosphere (UTLS). This leads to significant enhancements in the UTLS of trace species that originate from pollution or biomass burning. Convection connected to the ASM occurs over South, Southeast, and East Asia, a region with complex and rapidly changing emissions due to its high population density and economic growth. Pollution that reaches the UTLS from this region can have significant effects on the climate and chemistry of the atmosphere, making it important to have an accurate representation and understanding of ASM transport, chemical, and microphysical processes for chemistry-climate models to characterize these interactions and for predicting future impacts on climate.The ACCLIP campaign is conducted by the National Aeronautics and Space Administration (NASA) and the National Center for Atmospheric Research (NCAR) with the primary goal of investigating the impacts of Asian gas and aerosol emissions on global chemistry and climate. The NASA WB-57 and NCAR G-V aircraft are outfitted with state-of-the-art sensors to accomplish this. ACCLIP seeks to address four scientific objectives related to its main goal. The first is to investigate the transport pathways of ASM uplifted air from inside of the anticyclone to the global UTLS. Another objective is to sample the chemical content of air processed in the ASM in order to quantify the role of the ASM in transporting chemically active species and short-lived climate forcing agents to the UTLS to determine their impact on stratospheric ozone chemistry and global climate. Third, information is obtained on aerosol size, mass, and chemical composition that is necessary for determining the radiative effects of the ASM to constrain models of aerosol formation and for contrasting the organic-rich ASM UTLS aerosol population with that of the background aerosols. Last, ACCLIP seeks to measure the water vapor distribution associated with the monsoon dynamical structure to evaluate transport across the tropopause and determine the role of the ASM in water vapor transport in the stratosphere.