데이터셋 상세
미국
Digital data sets that describe aquifer characteristics of the Antlers aquifer in southeastern Oklahoma
This data set consists of digitized aquifer boundaries of the Antlers aquifer in southeastern Oklahoma. The Early Cretaceous-age Antlers Sandstone is an important source of water in an area that underlies about 4,400-square miles of all or part of Atoka, Bryan, Carter, Choctaw, Johnston, Love, Marshall, McCurtain, and Pushmataha Counties. The Antlers aquifer consists of sand, clay, conglomerate, and limestone in the outcrop area. The upper part of the Antlers aquifer consists of beds of sand, poorly cemented sandstone, sandy shale, silt, and clay. The Antlers aquifer is unconfined where it outcrops in about an 1,800-square-mile area. The data set includes the outcrop area of the Antlers Sandstone in Oklahoma and areas where the Antlers is overlain by alluvial and terrace deposits and a few small thin outcrops of the Goodland Limestone. Most of the aquifer boundary lines were extracted from published digital geology data sets. Some of the lines were interpolated in areas where the Antlers aquifer is overlain by alluvial and terrace deposits near streams and rivers. The interpolated lines are very similar to the aquifer boundaries published in a ground-water modeling report for the Antlers aquifer. The maps from which this data set was derived were scanned or digitized from maps published at a scale of 1:250,000.
데이터 정보
연관 데이터
Digital data sets that describe aquifer characteristics of the Antlers aquifer in southeastern Oklahoma
공공데이터포털
This data set consists of digitized aquifer boundaries of the Antlers aquifer in southeastern Oklahoma. The Early Cretaceous-age Antlers Sandstone is an important source of water in an area that underlies about 4,400-square miles of all or part of Atoka, Bryan, Carter, Choctaw, Johnston, Love, Marshall, McCurtain, and Pushmataha Counties. The Antlers aquifer consists of sand, clay, conglomerate, and limestone in the outcrop area. The upper part of the Antlers aquifer consists of beds of sand, poorly cemented sandstone, sandy shale, silt, and clay. The Antlers aquifer is unconfined where it outcrops in about an 1,800-square-mile area. The data set includes the outcrop area of the Antlers Sandstone in Oklahoma and areas where the Antlers is overlain by alluvial and terrace deposits and a few small thin outcrops of the Goodland Limestone. Most of the aquifer boundary lines were extracted from published digital geology data sets. Some of the lines were interpolated in areas where the Antlers aquifer is overlain by alluvial and terrace deposits near streams and rivers. The interpolated lines are very similar to the aquifer boundaries published in a ground-water modeling report for the Antlers aquifer. The maps from which this data set was derived were scanned or digitized from maps published at a scale of 1:250,000.
Digital data sets that describe aquifer characteristics of the Antlers aquifer in southeastern Oklahoma
공공데이터포털
This data set consists of digitized water-level elevation contours for the Antlers aquifer in southeastern Oklahoma. The Early Cretaceous-age Antlers Sandstone is an important source of water in an area that underlies about 4,400-square miles of all or part of Atoka, Bryan, Carter, Choctaw, Johnston, Love, Marshall, McCurtain, and Pushmataha Counties. The Antlers aquifer consists of sand, clay, conglomerate, and limestone in the outcrop area. The upper part of the Antlers aquifer consists of beds of sand, poorly cemented sandstone, sandy shale, silt, and clay. The Antlers aquifer is unconfined where it outcrops in about an 1,800-square-mile area. The water-level elevation contours were digitized from a mylar map at a scale of 1:250,000 that was used to prepare a final map published at a scale of 1:500,000 in a ground-water modeling report. Water levels measured in wells in 1970 were used to construct the map. The water-level elevation contours for the Antlers aquifer in Texas are not included in this data set. The digital data set contains water-level elevations that range from 300 feet (in the east) to 900 feet (in the west) above sea level or the National Geodetic Vertical Datum of 1929.
Digital data sets that describe aquifer characteristics of the Antlers aquifer in southeastern Oklahoma
공공데이터포털
This data set consists of digitized polygons of constant recharge values for the Antlers aquifer in southeastern Oklahoma. The Early Cretaceous-age Antlers Sandstone is an important source of water in an area that underlies about 4,400-square miles of all or part of Atoka, Bryan, Carter, Choctaw, Johnston, Love, Marshall, McCurtain, and Pushmataha Counties. The Antlers aquifer consists of sand, clay, conglomerate, and limestone in the outcrop area. The upper part of the Antlers aquifer consists of beds of sand, poorly cemented sandstone, sandy shale, silt, and clay. The Antlers aquifer is unconfined where it outcrops in about an 1,800-square-mile area. The recharge polygons were developed from recharge rates used as input into a ground-water flow model and from published digital data sets of the surficial geology of the Antlers Sandstone except in areas overlain by alluvial and terrace deposits near streams. Some of the lines were interpolated where the Antlers aquifer is overlain by alluvial and terrace deposits. The interpolated lines are very similar to the aquifer boundaries shown on maps published in a ground-water modeling report for the Antlers aquifer. The constant recharge rates used as input to the ground-water flow model were 0.32 inches per year for the western portion of the aquifer and 0.96 inches per year for the eastern portion of the aquifer. Ground-water flow models are numerical representations that simplify and aggregate natural systems. Models are not unique; different combinations of aquifer characteristics may produce similar results. Therefore, values of recharge used in the model and presented in this data set are not precise, but are within a reasonable range when compared to independently collected data.
Digital data sets that describe aquifer characteristics of the High Plains aquifer in western Oklahoma
공공데이터포털
This data set consists of digital aquifer boundaries for the High Plains aquifer in western Oklahoma. This area encompasses the panhandle counties of Cimarron, Texas, and Beaver, and the western counties of Harper, Ellis, Woodward, Dewey, and Roger Mills. The High Plains aquifer underlies approximately 7,000 square miles of Oklahoma and is used extensively for irrigation. The High Plains aquifer is a water-table aquifer and consists predominately of the Tertiary-age Ogallala Formation and overlying Quaternary-age alluvial and terrace deposits. In some areas the aquifer is absent and the underlying Triassic, Jurassic, or Cretaceous-age rocks are exposed at the surface. These rocks are hydraulically connected with the aquifer in some areas. The High Plains aquifer is composed of interbedded sand, siltstone, clay, gravel, thin limestones, and caliche. The proportion of various lithological materials changes rapidly from place to place, but poorly sorted sand and gravel predominate. The rocks are poorly to moderately well cemented by calcium carbonate. The aquifer boundaries were constructed by extracting lines from digital surficial geology data sets based on a scale of 1:125,000 for the panhandle counties and 1:250,000 for the western counties. Some of the lines were digitized from maps in a published water-level elevation map for 1980.
Digital data sets that describe aquifer characteristics of the Central Oklahoma aquifer in central Oklahoma
공공데이터포털
This data set consists of digitized aquifer boundaries created for a previously published report about the Central Oklahoma aquifer in central Oklahoma. This area encompasses all or part of Cleveland, Lincoln, Logan, Oklahoma, Payne, and Pottawatomie Counties. The Central Oklahoma aquifer includes the alluvial and terrace deposits along major streams, the Garber Sandstone and Wellington Formations, and the Chase, Council Grove, and Admire Groups. The Quaternary-age alluvial and terrace deposits consist of unconsolidated clay, silt, sand, and gravel. The Permian-age Garber Sandstone and Wellington Formations consist of sandstone with interbedded siltstone and mudstone. The Permian-age Chase, Council Grove, and Admire Groups consist of sandstone, shale, and thin limestone. The Central Oklahoma aquifer underlies about 3,000 square miles of central Oklahoma where the aquifer is used extensively for municipal, industrial, commercial, and domestic water supplies. Most of the usable ground water within the aquifer is from the Garber Sandstone and Wellington Formations. Substantial quantities of usable ground water also are present in the Chase, Council Grove, and Admire Groups, and in alluvial and terrace deposits associated with the major streams.