Extensometer Data Used as Aquifer-System Compaction Observations for Model Calibration, Central Valley, California, 1958-2018
공공데이터포털
The Central Valley, and particularly the San Joaquin Valley, has a long history of land subsidence caused by groundwater development. The extensive withdrawal of groundwater from the unconsolidated deposits of the San Joaquin Valley lowered groundwater levels and caused widespread land subsidence—reaching 9 meters by 1981. More than half of the thickness of the aquifer system is composed of fine-grained sediments, including clays, silts, and sandy or silty clays that are susceptible to compaction. In an effort to aid water managers in understanding how water moves through the aquifer system, predicting water-supply scenarios, and addressing issues related to water competition, the United States Geological Survey (USGS) developed a new hydrologic modeling tool, the Central Valley Hydrologic Model (CVHM; Faunt and others 2009). The data presented in this data release will be used to facilitate updates to the original CVHM, and represent aquifer-system compaction observations (measurements) using borehole extensometer data during 1958–2018 by USGS, California Department of Water Resources, San Luis and Delta-Mendota Water Agency, and Luhdorff and Scalmanini Consulting Engineers. For a more detailed description of borehole extensometer methods, please see Sneed and others (2013; 2018).
Central Valley Hydrologic Model version 2 (CVHM2): Subsidence and Aquifer-System Compaction Data Used as Observations (ver. 2.1, August 2023)
공공데이터포털
The Central Valley, and particularly the San Joaquin Valley, has a long history of land subsidence caused by groundwater development. The extensive withdrawal of groundwater from the unconsolidated deposits of the San Joaquin Valley lowered groundwater levels and caused widespread land subsidence—reaching 9 meters by 1981. More than half of the thickness of the aquifer system is composed of fine-grained sediments, including clays, silts, and sandy or silty clays that are susceptible to compaction. In an effort to aid water managers in understanding how water moves through the aquifer system, predicting water-supply scenarios, and addressing issues related to water competition, the United States Geological Survey (USGS) developed a new hydrologic modeling tool, the Central Valley Hydrologic Model (CVHM; Faunt and others 2009). The data presented in this data release will be used to facilitate updates to the original CVHM and represent subsidence and aquifer-system compaction observations (measurements) using various methods during 1926–2018. In the context of this report, subsidence is defined as the lowering of the land-surface elevation as a result of aquifer-system compaction and is calculated by differencing repeated elevation measurements derived from geodetic surveys, continuous GPS (CGPS), and Interferometric Synthetic Aperture Radar (InSAR) techniques. Aquifer-system compaction is measured using vertical borehole extensometers to monitor changes in the distance between the top of a cable or pipe that is anchored or placed at depth, and a reference point at or near land surface. For more detailed information on the methods discussed in this data release, please see Sneed and others, 2013; 2018).
Geodetic Survey Data Used as Subsidence Observations for Model Calibration, Central Valley, California
공공데이터포털
The Central Valley, and particularly the San Joaquin Valley, has a long history of land subsidence caused by groundwater development. The extensive withdrawal of groundwater from the unconsolidated deposits of the San Joaquin Valley lowered groundwater levels and caused widespread land subsidence—reaching 9 meters by 1981. More than half of the thickness of the aquifer system is composed of fine-grained sediments, including clays, silts, and sandy or silty clays that are susceptible to compaction. In an effort to aid water managers in understanding how water moves through the aquifer system, predicting water-supply scenarios, and addressing issues related to water competition, the United States Geological Survey (USGS) developed a new hydrologic modeling tool, the Central Valley Hydrologic Model (CVHM; Faunt and others 2009). The data presented in this data release will be used to facilitate updates to the original CVHM and represent subsidence observations (measurements) using geodetic surveys during 1926–2021 by USGS, Bureau of Reclamation (Reclamation), California Department of Water Resources (DWR), National Geodetic Survey (NGS), and San Luis and Delta-Mendota Water Agency (SLDMWA). In the context of this report, subsidence is defined as the lowering of the land-surface elevation as a result of aquifer-system compaction and is calculated by differencing repeated measurements. While the model only goes through 2019, the 2021 data is included in this data release for completeness. For a more detailed description of geodetic survey methods, please see Poland and others (1975) and Sneed and others (2020).
Continuous Global Positioning System Data Used as Subsidence Observations for Model Calibration, Central Valley, California
공공데이터포털
The Central Valley, and particularly the San Joaquin Valley, has a long history of land subsidence caused by groundwater development. The extensive withdrawal of groundwater from the unconsolidated deposits of the San Joaquin Valley lowered groundwater levels and caused widespread land subsidence—reaching 9 meters by 1981. More than half of the thickness of the aquifer system is composed of fine-grained sediments, including clays, silts, and sandy or silty clays that are susceptible to compaction. In an effort to aid water managers in understanding how water moves through the aquifer system, predicting water-supply scenarios, and addressing issues related to water competition, the United States Geological Survey (USGS) developed a new hydrologic modeling tool, the Central Valley Hydrologic Model (CVHM; Faunt and others 2009). The data presented in this data release will be used to facilitate updates to the original CVHM, and represent subsidence observations (measurements) using continuous Global Positioning System (CGPS) methods during 1999–2018. For a more detailed description of CGPS methods, please see Sneed and others (2013; 2018).
Interferometric Synthetic Aperture Radar Data Used as Subsidence Observations for Model Calibration, Central Valley, California (ver. 2.1, August 2023)
공공데이터포털
The Central Valley, and particularly the San Joaquin Valley, has a long history of land subsidence caused by groundwater development. The extensive withdrawal of groundwater from the unconsolidated deposits of the San Joaquin Valley lowered groundwater levels and caused widespread land subsidence—reaching 9 meters by 1981. More than half of the thickness of the aquifer system is composed of fine-grained sediments, including clays, silts, and sandy or silty clays that are susceptible to compaction. In an effort to aid water managers in understanding how water moves through the aquifer system, predicting water-supply scenarios, and addressing issues related to water competition, the United States Geological Survey (USGS) developed a new hydrologic modeling tool, the Central Valley Hydrologic Model (CVHM; Faunt and others 2009). For a more detailed description of satellite-based InSAR methods, please see Sneed and others (2013; 2018). For a more detailed description of UAVSAR, please see https://uavsar.jpl.nasa.gov/education/what-is-uavsar.html. The data presented in this data release was provided by Sneed and others (2013; 2018) and will be used to facilitate updates from CVHM to CVHM2 and represent subsidence observations (measurements) using satellite and airborne Interferometric Synthetic Aperture Radar (InSAR) data during 2003–2016. In the context of this report, subsidence is defined as the lowering of the land-surface elevation as a result of aquifer-system compaction and is calculated by differencing repeated elevation measurements. InSAR methods have been used to monitor land subsidence in the Central Valley and are discussed in more detail in the following sections.
Data for assessing the penetration depth post-1950s water in the Central Valley aquifer system, California (July 2022)
공공데이터포털
This dataset provides groundwater ages estimates that were used in an assessment of the penetration depth of modern groundwater in the Central Valley aquifer system (CVAL). Groundwater ages were estimated by calibration of environmental tracers (tritium, tritiogenic helium-3, chlorofluorocarbons, sulfur hexafluoride, carbon-14 and radiogenic helium-4) to lumped parameter models (LPMs) for samples from 650 sample locations. Groundwater samples were collected from wells (mainly drinking-water) in the CVAL between 2004 and 2017 as part of the California State Water Resources Control Board Groundwater Ambient Monitoring and Assessment Priority Basin Project (GAMA-PBP) and the National Water-Quality Assessment (NAWQA) Project. Table 1 reports the primary results of this assessment including mean groundwater age and the input for calculation of mean groundwater age: results of the tritium age classification, condensed results from dissolved gas modeling, and calculated environmental tracer concentrations. Calibrated lumped parameter models provide the optimal mean age and mixing parameter(s) used to compute the distribution of ages that explain the measured tracer concentrations in a sample. Tables 2, 3, and 4 provide results in support of Table 1. Table 2 reports detailed results for the calibration of dissolved gas models to neon, argon, krypton, xenon, and nitrogen. Calibrated dissolved gas models provide the optimal water temperature, excess air, entrapped air, fractionation of gases, and excess nitrogen gas (mainly from denitrification) that explain the measured dissolved gases in a sample. Table 3 reports measured concentrations and the detailed calculations of environmental tracer concentrations derived from the dissolved gas modeling results in Table 2. Calculated concentrations of environmental tracers that can be used in groundwater age calculations are the dry air mixing ratio of sulfur hexafluoride or chlorofluorocarbons, tritiogenic helium-3, which is the concentration of helium-3 from the decay of tritium, and radiogenic helium-4. Table 4 reports information used to calculate the partial exponential model ratios used in the groundwater age modeling. In addition to these four tables, two ancillary tables are included to provide more detailed information about the fields and the abbreviations used in tables 1-4.
Estimated Subsidence in the San Joaquin Valley between 1949 – 2005
공공데이터포털
San Joaquin Valley Subsidence Analysis README. Written: Joel Dudas, 3/12/2017. Amended: Ben Brezing, 4/2/2019. DWR’s Division of Engineering Geodetic Branch received a request in 1/2017 from Jeanine Jones to produce a graphic of historic subsidence in the entirety of the San Joaquin Valley. The task was assigned to the Mapping & Photogrammetry Office and the Geospatial Data Support Section to complete by early February. After reviewing the alternatives, the decision was made to produce contours from the oldest available set of quad maps for which there was reasonable certainty about quality and datum, and to compare that to the most current Valley-wide DEM. For the first requirement, research indicated that the 1950’s vintage quad maps for the Valley were the best alternative. Prior quad map editions are uneven in quality and vintage, and the actual control used for the contour lines was extremely suspect. The 1950’s quads, by contrast, were produced primarily on the basis of 1948-1949 aerial photography, along with control corresponding to that period, and referenced to the National Geodetic Vertical Datum of 1929. For the current set, the most recent Valley-wide dataset that was freely available, in the public domain, and of reasonable accuracy was the 2005 NextMap SAR acquisition (referenced to NAVD88). The primary bulk of the work focused on digitizing the 1950’s contours. First, all of the necessary quads were downloaded from the online USGS quad source https://ngmdb.usgs.gov/maps/Topoview/viewer/#4/41.13/-107.51. Then the entire staff of the Mapping & Photogrammetry Lab (including both the Mapping Office and GDDS staff) proceeded to digitize the contours. Given the short turnaround time constraint and limited budget, certain shortcuts occurred in contour development. While efforts were made to digitize accurately, speed really was important. Contours were primarily focused only on agricultural and other lowland areas, and so highlands were by and large skipped. The tight details of contours along rivers, levees, and hillsides was skipped and/or simplified. In some cases, only major contours were digitized. The mapping on the source quads itself varied….in a few cases on spot elevations on benchmarks were available in quads. The contour interval sometimes varied, even within the quad sheet itself. In addition, because 8 different people were creating the contours, variability exists in the style and attention to detail. It should be understood that given the purpose of the project (display regional subsidence patterns), that literal and precise development of the historic contour sets leaves some things to be desired. These caveats being said, the linework is reasonably accurate for what it is (particularly given that the contours of that era themselves were mapped at an unknown and varying actual quality). The digitizers tagged the lines with Z values manually entered after linework that corresponded to the mapped elevation contours. Joel Dudas then did what could be called a “rough” QA/QC of the contours. The individual lines were stitched together into a single contour set, and exported to an elevation raster (using TopoToRaster in ArcGIS 10.4). Gross blunders in Z values were corrected. Gaps in the coverage were filled. The elevation grid was then adjusted to NAVD88 using a single adjustment for the entire coverage area (2.5’, which is a pretty close average of values in this region). The NextMap data was extracted for the area, and converted into feet. The two raster sets were fixed to the same origin point. The subsidence grid was then created by subtracting the old contour-derived grid from the NextMAP DEM. The subsidence grid that includes all of the values has the suffix “ALL”. Then, to improve the display fidelity, some of the extreme values (above +5’ and below -20’*) were filtered out of the dataset, and the subsidence grid was regenerated for these areas and suffixed with “cut.” The purpose of this cut was to