데이터셋 상세
캘리포니아 오픈데이터
Estimated Subsidence in the San Joaquin Valley between 1949 – 2005
San Joaquin Valley Subsidence Analysis README. Written: Joel Dudas, 3/12/2017. Amended: Ben Brezing, 4/2/2019. DWR’s Division of Engineering Geodetic Branch received a request in 1/2017 from Jeanine Jones to produce a graphic of historic subsidence in the entirety of the San Joaquin Valley. The task was assigned to the Mapping & Photogrammetry Office and the Geospatial Data Support Section to complete by early February. After reviewing the alternatives, the decision was made to produce contours from the oldest available set of quad maps for which there was reasonable certainty about quality and datum, and to compare that to the most current Valley-wide DEM. For the first requirement, research indicated that the 1950’s vintage quad maps for the Valley were the best alternative. Prior quad map editions are uneven in quality and vintage, and the actual control used for the contour lines was extremely suspect. The 1950’s quads, by contrast, were produced primarily on the basis of 1948-1949 aerial photography, along with control corresponding to that period, and referenced to the National Geodetic Vertical Datum of 1929. For the current set, the most recent Valley-wide dataset that was freely available, in the public domain, and of reasonable accuracy was the 2005 NextMap SAR acquisition (referenced to NAVD88). The primary bulk of the work focused on digitizing the 1950’s contours. First, all of the necessary quads were downloaded from the online USGS quad source https://ngmdb.usgs.gov/maps/Topoview/viewer/#4/41.13/-107.51. Then the entire staff of the Mapping & Photogrammetry Lab (including both the Mapping Office and GDDS staff) proceeded to digitize the contours. Given the short turnaround time constraint and limited budget, certain shortcuts occurred in contour development. While efforts were made to digitize accurately, speed really was important. Contours were primarily focused only on agricultural and other lowland areas, and so highlands were by and large skipped. The tight details of contours along rivers, levees, and hillsides was skipped and/or simplified. In some cases, only major contours were digitized. The mapping on the source quads itself varied….in a few cases on spot elevations on benchmarks were available in quads. The contour interval sometimes varied, even within the quad sheet itself. In addition, because 8 different people were creating the contours, variability exists in the style and attention to detail. It should be understood that given the purpose of the project (display regional subsidence patterns), that literal and precise development of the historic contour sets leaves some things to be desired. These caveats being said, the linework is reasonably accurate for what it is (particularly given that the contours of that era themselves were mapped at an unknown and varying actual quality). The digitizers tagged the lines with Z values manually entered after linework that corresponded to the mapped elevation contours. Joel Dudas then did what could be called a “rough” QA/QC of the contours. The individual lines were stitched together into a single contour set, and exported to an elevation raster (using TopoToRaster in ArcGIS 10.4). Gross blunders in Z values were corrected. Gaps in the coverage were filled. The elevation grid was then adjusted to NAVD88 using a single adjustment for the entire coverage area (2.5’, which is a pretty close average of values in this region). The NextMap data was extracted for the area, and converted into feet. The two raster sets were fixed to the same origin point. The subsidence grid was then created by subtracting the old contour-derived grid from the NextMAP DEM. The subsidence grid that includes all of the values has the suffix “ALL”. Then, to improve the display fidelity, some of the extreme values (above +5’ and below -20’*) were filtered out of the dataset, and the subsidence grid was regenerated for these areas and suffixed with “cut.” The purpose of this cut was to
데이터 정보
연관 데이터
Central Valley Hydrologic Model version 2 (CVHM2): Subsidence and Aquifer-System Compaction Data Used as Observations (ver. 2.1, August 2023)
공공데이터포털
The Central Valley, and particularly the San Joaquin Valley, has a long history of land subsidence caused by groundwater development. The extensive withdrawal of groundwater from the unconsolidated deposits of the San Joaquin Valley lowered groundwater levels and caused widespread land subsidence—reaching 9 meters by 1981. More than half of the thickness of the aquifer system is composed of fine-grained sediments, including clays, silts, and sandy or silty clays that are susceptible to compaction. In an effort to aid water managers in understanding how water moves through the aquifer system, predicting water-supply scenarios, and addressing issues related to water competition, the United States Geological Survey (USGS) developed a new hydrologic modeling tool, the Central Valley Hydrologic Model (CVHM; Faunt and others 2009). The data presented in this data release will be used to facilitate updates to the original CVHM and represent subsidence and aquifer-system compaction observations (measurements) using various methods during 1926–2018. In the context of this report, subsidence is defined as the lowering of the land-surface elevation as a result of aquifer-system compaction and is calculated by differencing repeated elevation measurements derived from geodetic surveys, continuous GPS (CGPS), and Interferometric Synthetic Aperture Radar (InSAR) techniques. Aquifer-system compaction is measured using vertical borehole extensometers to monitor changes in the distance between the top of a cable or pipe that is anchored or placed at depth, and a reference point at or near land surface. For more detailed information on the methods discussed in this data release, please see Sneed and others, 2013; 2018).
Geodetic Survey Data Used as Subsidence Observations for Model Calibration, Central Valley, California
공공데이터포털
The Central Valley, and particularly the San Joaquin Valley, has a long history of land subsidence caused by groundwater development. The extensive withdrawal of groundwater from the unconsolidated deposits of the San Joaquin Valley lowered groundwater levels and caused widespread land subsidence—reaching 9 meters by 1981. More than half of the thickness of the aquifer system is composed of fine-grained sediments, including clays, silts, and sandy or silty clays that are susceptible to compaction. In an effort to aid water managers in understanding how water moves through the aquifer system, predicting water-supply scenarios, and addressing issues related to water competition, the United States Geological Survey (USGS) developed a new hydrologic modeling tool, the Central Valley Hydrologic Model (CVHM; Faunt and others 2009). The data presented in this data release will be used to facilitate updates to the original CVHM and represent subsidence observations (measurements) using geodetic surveys during 1926–2021 by USGS, Bureau of Reclamation (Reclamation), California Department of Water Resources (DWR), National Geodetic Survey (NGS), and San Luis and Delta-Mendota Water Agency (SLDMWA). In the context of this report, subsidence is defined as the lowering of the land-surface elevation as a result of aquifer-system compaction and is calculated by differencing repeated measurements. While the model only goes through 2019, the 2021 data is included in this data release for completeness. For a more detailed description of geodetic survey methods, please see Poland and others (1975) and Sneed and others (2020).
Extensometer Data Used as Aquifer-System Compaction Observations for Model Calibration, Central Valley, California, 1958-2018
공공데이터포털
The Central Valley, and particularly the San Joaquin Valley, has a long history of land subsidence caused by groundwater development. The extensive withdrawal of groundwater from the unconsolidated deposits of the San Joaquin Valley lowered groundwater levels and caused widespread land subsidence—reaching 9 meters by 1981. More than half of the thickness of the aquifer system is composed of fine-grained sediments, including clays, silts, and sandy or silty clays that are susceptible to compaction. In an effort to aid water managers in understanding how water moves through the aquifer system, predicting water-supply scenarios, and addressing issues related to water competition, the United States Geological Survey (USGS) developed a new hydrologic modeling tool, the Central Valley Hydrologic Model (CVHM; Faunt and others 2009). The data presented in this data release will be used to facilitate updates to the original CVHM, and represent aquifer-system compaction observations (measurements) using borehole extensometer data during 1958–2018 by USGS, California Department of Water Resources, San Luis and Delta-Mendota Water Agency, and Luhdorff and Scalmanini Consulting Engineers. For a more detailed description of borehole extensometer methods, please see Sneed and others (2013; 2018).
Extensometer Data Used as Aquifer-System Compaction Observations for Model Calibration, Central Valley, California, 1958-2018
공공데이터포털
The Central Valley, and particularly the San Joaquin Valley, has a long history of land subsidence caused by groundwater development. The extensive withdrawal of groundwater from the unconsolidated deposits of the San Joaquin Valley lowered groundwater levels and caused widespread land subsidence—reaching 9 meters by 1981. More than half of the thickness of the aquifer system is composed of fine-grained sediments, including clays, silts, and sandy or silty clays that are susceptible to compaction. In an effort to aid water managers in understanding how water moves through the aquifer system, predicting water-supply scenarios, and addressing issues related to water competition, the United States Geological Survey (USGS) developed a new hydrologic modeling tool, the Central Valley Hydrologic Model (CVHM; Faunt and others 2009). The data presented in this data release will be used to facilitate updates to the original CVHM, and represent aquifer-system compaction observations (measurements) using borehole extensometer data during 1958–2018 by USGS, California Department of Water Resources, San Luis and Delta-Mendota Water Agency, and Luhdorff and Scalmanini Consulting Engineers. For a more detailed description of borehole extensometer methods, please see Sneed and others (2013; 2018).
Continuous Global Positioning System Data Used as Subsidence Observations for Model Calibration, Central Valley, California
공공데이터포털
The Central Valley, and particularly the San Joaquin Valley, has a long history of land subsidence caused by groundwater development. The extensive withdrawal of groundwater from the unconsolidated deposits of the San Joaquin Valley lowered groundwater levels and caused widespread land subsidence—reaching 9 meters by 1981. More than half of the thickness of the aquifer system is composed of fine-grained sediments, including clays, silts, and sandy or silty clays that are susceptible to compaction. In an effort to aid water managers in understanding how water moves through the aquifer system, predicting water-supply scenarios, and addressing issues related to water competition, the United States Geological Survey (USGS) developed a new hydrologic modeling tool, the Central Valley Hydrologic Model (CVHM; Faunt and others 2009). The data presented in this data release will be used to facilitate updates to the original CVHM, and represent subsidence observations (measurements) using continuous Global Positioning System (CGPS) methods during 1999–2018. For a more detailed description of CGPS methods, please see Sneed and others (2013; 2018).
NASA JPL InSAR Subsidence Data (Superseded)
공공데이터포털
### This dataset has been superseded by https://data.cnra.ca.gov/dataset/tre-altamira-insar-subsidence This dataset represents measurements of vertical ground surface displacement in Bulletin 118 groundwater basins between spring of 2015 and summer of 2017. Image resolution is 0.0008333 degrees, or approximately 92 meters in north-south direction, and 70-77 meters in east-west direction (low end of range applies to northern latitudes and higher end of range applies to lower latitudes). Vertical ground surface displacement rates are derived from Interferometric Synthetic Aperture Radar (InSAR) data that are collected by the European Space Agency (ESA) Sentinel-1A satellite and processed by the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL), under contract with to the California Department of Water Resources (DWR). JPL presented preliminary processing results in the Progress Report: Subsidence in California, March 2015 – September 2016, and submitted a later version of the processing results that are still preliminary to the California Department of Water Resources (DWR). These files provided by JPL to DWR are multiband floating point GeoTIFFs with each band representing a date. GeoTIFF pixel values are in inches equal to the cumulative vertical displacement from the first date. JPL processed Sentinel-1A InSAR data separately for three different geographic regions; The Sacramento Valley, the San Joaquin Valley, and the South Central Coast. DWR temporarily interpolated the JPL data to end-of-month values, merged the resulting rasters from all three regions into a single raster for each month, and clipped all rasters to Bulletin 118 groundwater basins. DWR derived rasters for total vertical displacement relative to May 31, 2015, as well as rasters for annual vertical displacement rates, both in monthly time steps. Data are considered public domain. DWR makes no warranties or guarantees — either expressed or implied — as to the completeness, accuracy, or correctness of the data. DWR neither accepts nor assumes liability arising from or for any incorrect, incomplete, or misleading subject data. This is an official DWR Image Service, published on 2/9/2018 by Ben Brezing of the DWR Division of Statewide Integrated Water Management, who may be contacted at Benjamin.brezing@water.ca.gov or (916) 651-9291. Date of acquisition: Between Spring of 2015 and Spring of 2017. Date of production: 2017. Date of delivery of product: Delivered from NASA JPL to DWR in September of 2017. Processing steps: See Progress Report: Subsidence in California, March 2015 – September 2016, Tom G. Farr, Cathleen E. Jones, Zhen Liu, Jet Propulsion Laboratory, 2016. Pixel value definitions: Vertical ground surface displacement in inches for time period specified above. Positional accuracy: See Progress Report: Subsidence in California, March 2015 – September 2016, Tom G. Farr, Cathleen E. Jones, Zhen Liu, Jet Propulsion Laboratory, 2016.
Interferometric Synthetic Aperture Radar Data Used as Subsidence Observations for Model Calibration, Central Valley, California (ver. 2.1, August 2023)
공공데이터포털
The Central Valley, and particularly the San Joaquin Valley, has a long history of land subsidence caused by groundwater development. The extensive withdrawal of groundwater from the unconsolidated deposits of the San Joaquin Valley lowered groundwater levels and caused widespread land subsidence—reaching 9 meters by 1981. More than half of the thickness of the aquifer system is composed of fine-grained sediments, including clays, silts, and sandy or silty clays that are susceptible to compaction. In an effort to aid water managers in understanding how water moves through the aquifer system, predicting water-supply scenarios, and addressing issues related to water competition, the United States Geological Survey (USGS) developed a new hydrologic modeling tool, the Central Valley Hydrologic Model (CVHM; Faunt and others 2009). For a more detailed description of satellite-based InSAR methods, please see Sneed and others (2013; 2018). For a more detailed description of UAVSAR, please see https://uavsar.jpl.nasa.gov/education/what-is-uavsar.html. The data presented in this data release was provided by Sneed and others (2013; 2018) and will be used to facilitate updates from CVHM to CVHM2 and represent subsidence observations (measurements) using satellite and airborne Interferometric Synthetic Aperture Radar (InSAR) data during 2003–2016. In the context of this report, subsidence is defined as the lowering of the land-surface elevation as a result of aquifer-system compaction and is calculated by differencing repeated elevation measurements. InSAR methods have been used to monitor land subsidence in the Central Valley and are discussed in more detail in the following sections.