데이터셋 상세
미국
Gamma-RaySourceSummaryCatalog(Macomb&Gehrels1999&2001)
This database table is a revised and updated version of the published General Gamma-Ray Source Catalog (Macomb & Gehrels 1999, ApJS, 120, 335). It contains all 309 gamma-ray point sources listed in Table 1 of the published version of this catalog; 4 gamma-ray point sources (2CG 054+01, A0620-00, GX 340+0, and H1822-000) added by the HEASARC that were listed in Table 2 of the published catalog but were (presumably accidentally) omitted from Table 1 of the published catalog; and 107 sources (106 sources from the 3rd Egret (3EG) catalog of Hartman et al. (1999, ApJS, 123, 79) and GEV J1732-3130) that were compiled by Macomb and Gehrels subsequent to their original publication (Macomb and Gehrels 2001, unpublished). Thus, the present database table is essentially a summary master list of all detected gamma-ray point sources as of circa 2000. There is another HEASARC database table called the Gamma-Ray Source Detailed Catalog (Macomb & Gehrels 1999 & 2001) or MGGAMMADET that contains detailed information on the gamma-ray properties of these sources such as fluxes and spectral indices and that is based on Tables 2A-2G of the Macomb & Gehrels paper. This database table was created by the HEASARC in March 2001 based on tables supplied to the HEASARC by the catalog authors which contained an updated version of Table 1 from the published paper. This is a service provided by NASA HEASARC .
데이터 정보
연관 데이터
Gamma-RaySourceDetailedCatalog(Macomb&Gehrels1999)
공공데이터포털
This database table contains the slightly revised contents of the detailed Tables 2A - 2G from the General Gamma-Ray Source Catalog of Macomb & Gehrels (1999). It lists details of all known gamma-ray observations within the energy range from 50 keV to ~1 TeV for 314 discrete gamma-ray sources that were listed in Tables 2A - 2G of the published version of this catalog, including all 310 sources listed in the published Summary Table 1, together with 4 sources (2CG 054+01, A0620-00, GX 340+0, and H1822-000) that were listed only in Table 2 of the published catalog but were (presumably accidentally) omitted from Table 1. The positions for the sources in the present database were taken from Table 1 of the General Gamma-Ray Source Catalog. Thus, this table is essentially a compilation of gamma-ray observations of discrete sources as known to the authors as of early 1999. There is another HEASARC database table called the Gamma-Ray Source Summary Catalog (Macomb & Gehrels 1999) or MGGAMMACAT that contains the summary information on these sources that was given in Table 1 of the General Gamma-Ray Source Catalog. As noted above, this is a slightly revised version compared to the published Tables 2A - 2G. The known differences between the HEASARC and published versions are discussed in the HEASARC_Version section of the help documentation. This database table was created by the HEASARC in March 2002 based upon machine-readable versions of Tables 2A-2G of the Macomb & Gehrels (1999) General Gamma-Ray Source Catalog that were supplied by the authors. One duplicate entry was removed from this table in June 2019. This is a service provided by NASA HEASARC .
Catalog of Gamma-Ray Bursts
공공데이터포털
This GRBs Catalog (GRBCAT) records high level information of the GRBs detected since their discovery in 1967. The catalog has been created using publications that report lists of GRB detections. These are mostly papers already published in refereed journals, unpublished papers, and PhD thesis presenting lists of GRBs. GRBCAT includes also compilation of bursts that were already present in the HEASARC database system. The catalog is organized with a main table reporting general information for each GRB and additional tables linked to the main table where specific information for the flux and the region of detection are reported. Afterglow measurements are also recorded in a separate table for all bursts detected after May 11 1996. The main table for each GRB contains an entry for each satellite that reports a detection with either a flux and/or position measurement. Therefore for a given GRB there are multiple records if the GRB was detected by more than one satellite. The associated flux table contains an entry for each flux and fluence values reported in literature for a given energy band. The positional information is reported via different tables each dedicated to a specific region of detection. The region descriptions are the following : circle, annulus, box, dual, annulus intersect, irregular, and intersect. The associated afterglow table contains position, intensity and redshift measurements taken after the discovery of the GRB. There are several records associated to a given GRB/afterglow since several observatories collected data on that position. The main table and the associated tables are updated when a new GRB and/or afterglow measurements are reported. This table was ingested by the HEASARC in June 2008 based on electronic versions obtained from the author(s), who compiled the catalog in 2005. This is a service provided by NASA HEASARC .
AT20G/Fermi 1FGL Source Catalog
공공데이터포털
The high-frequency radio sky, like the gamma-ray sky surveyed by the Fermi satellite, is dominated by flat-spectrum radio quasars and BL Lac objects at bright flux levels. To investigate the relationship between radio and gamma-ray emission in extragalactic sources, the authors have cross-matched the Australia Telescope 20-GHz survey catalog (AT20G: Murphy et al. 2010, MNRAS, 402, 2403, available as a HEASARC Browse table) with the Fermi-LAT 1-year Point Source Catalog (1FGL: Abdo et al. 2010, ApJS, 188, 405, also available as the HEASARC Browse table FERMILPSC). The 6.0 sr of sky covered by both catalogs (Declination < 0 degrees, |b| > 1.5 degrees) contains 5890 AT20G radio sources and 604 1FGL gamma-ray sources. The AT20G source positions are accurate to within ~1 arcsec and, after excluding known Galactic sources, 43% of Fermi 1FGL sources have an AT20G source within the 95% Fermi confidence ellipse. Monte Carlo tests imply that at least 95% of these matches are genuine associations. Only five gamma-ray sources (1% of the Fermi catalog) have more than one AT20G counterpart in the Fermi error box. The AT20G matches also generally support the active galactic nucleus (AGN) associations in the First LAT AGN Catalog. The authors find a trend of increasing gamma-ray flux density with 20 GHz radio flux density. The Fermi detection rate of AT20G sources is close to 100% for the brightest 20 GHz sources, decreasing to 20% at 1 Jy, and to roughly 1% at 100 mJy. Eight of the matched AT20G sources have no association listed in 1FGL and are presented here as potential gamma-ray AGNs for the first time. The authors also identify an alternative AGN counterpart to one 1FGL source. The percentage of Fermi sources with AT20G detections decreases toward the Galactic plane, suggesting that the 1FGL catalog contains at least 50 Galactic gamma-ray sources in the southern hemisphere that are yet to be identified. This table contains the complete list of all 233 Fermi-AT20G matches. This table was created by the HEASARC in August 2010 based on the electronic version of Table 4 obtained from the ApJ web site. This is a service provided by NASA HEASARC .
Updated AGILE Catalog of Bright Gamma-Ray Sources and Variability
공공데이터포털
This table contains some of the results from a variability study of a sample of bright gamma-ray (30 MeV - 50 GeV) sources. This sample is an extension of the first AGILE catalog of gamma-ray sources (1AGL), obtained using the complete set of AGILE observations in pointing mode performed during a 2.3 year period from July 9, 2007 until October 30, 2009. The dataset of AGILE pointed observations covers a long time interval and its gamma-ray data archive is useful for monitoring studies of medium-to-high brightness gamma-ray sources. In the analysis reported here, the authors used data obtained with an improved event filter that covers a wider field of view, on a much larger (about 27.5 months) dataset, integrating data on observation block (OB) time scales, which mostly range from a few days to thirty days. The data processing resulted in a better characterized source list than 1AGL was, and includes 54 sources, 7 of which are new high galactic latitude (|b_II_|>= 5 degrees) sources, 8 are new sources on the galactic plane, and 20 sources are from the previous catalogue with revised positions. Eight 1AGL sources (2 high-latitude and 6 on the galactic plane) were not detected in the final processing either because of low OB exposure and/or due to their position in complex galactic regions. The reference paper reports the results in a catalog of all the detections obtained in each single OB, including the variability results for each of these sources. In particular, the authors found that 12 sources out of 42 or 11 out of 53 are variable, depending on the variability index used, where 42 and 53 are the number of sources for which these indices could be calculated. Seven of the 11 variable sources are blazars, the others are the Crab pulsar+nebula, LS I +61 303, Cyg X-3, and 1AGLR J2021+4030. This HEASARC table contains 54 AGILE-detected sources and the main parameters of their maximum significance (defined by sqrt(TS)) detections: for each source, the name, coordinates, the sqrt(TS) value as a measure of the detection significance, the E > 100 MeV flux, the four variability indices described in Section 5 of the reference paper, the number of detections, the confirmed counterparts and source class, if any, and other possible associations ordered according to the angular distance from the AGL source are given. These data are listed in Table 5a of the reference paper. This HEASARC table does not contain the list of fluxes for these sources as measured in all of the relevant individual OBs (Table 5b in the reference paper). This latter is obtainable from the CDS: http://cdsarc.u-strasbg.fr/ftp/cats/J_A+A/558/A137/table5b.dat. This table was created by the HEASARC in December 2013 based on CDS catalog J/A+A/558/A137 file table5a.dat. This is a service provided by NASA HEASARC .
CGRO/BATSE Gamma-Ray Burst Catalog
공공데이터포털
Radio-Selected Gamma-Ray Burst Afterglow Catalog
공공데이터포털
This table contains a catalog of radio afterglow observations of gamma-ray bursts (GRBs) over a 14 year period from 1997 to 2011. This sample of 304 afterglows consists of 2,995 flux density measurements (including upper limits) at frequencies between 0.6 GHz and 660 GHz, with the majority of data taken in the 8.5-GHz frequency band (1,539 measurements). The authors use this dataset to carry out a statistical analysis of the radio-selected sample. The detection rate of radio afterglows stayed unchanged almost at 31% before and after the launch of the Swift satellite. The canonical long-duration GRB radio light curve at 8.5 GHz peaks at three to six days in the source rest frame, with a median peak luminosity of 1031 erg/s/Hz. The peak radio luminosities for short-hard bursts, X-ray flashes, and the supernova-GRB classes are an order of magnitude or more fainter than this value. There are clear relationships between the detectability of a radio afterglow and the fluence or energy of a GRB, and the X-ray or optical brightness of the afterglow. However, the authors find few significant correlations between these same GRB and afterglow properties and the peak radio flux density. In their paper, they also produce synthetic light curves at centimeter and millimeter bands using a range of blast wave and microphysics parameters derived from multi-wavelength afterglow modeling, and use them to compare with the radio sample. Finding agreement, the authors extrapolate this behavior to predict the centimeter and millimeter behavior of GRBs which will observed by the Expanded Very Large Array and the Atacama Large Millimeter Array. The compiled sample consists of 304 GRBs observed with radio telescopes between 1997 January and 2011 January, along with the 2011 April 28 Fermi burst, GRB 110428A. The sample consists of a total of 2,995 flux density measurements taken in the frequency range from 0.6 to 660 GHz and spanning a time range from 0.026 to 1,339 days. Most of the afterglows (270 in total) in this sample were observed as part of VLA radio afterglow programs, whereas 15 bursts were observed by the Expanded VLA (EVLA), and 19 southern bursts with the Australia Telescope Compact Array (ATCA). This catalog describes the radio, optical and X-ray afterglow detections (see Section 2.2 of the reference paper): out of the 304 bursts, 123 bursts were observed in the pre-Swift epoch from 1997 until 2004. The remaining 181 bursts were observed between 2005 and 2011 April (the post-Swift epoch). Out of the 95 radio-detected afterglows (see Section 2.2 of the reference paper), 63 had radio lightcurves (i.e., three or more detections in a single radio band), whereas 32 bursts had less than three detections. For the GRBs for which the light curves were available, the authors determined the peak flux density and the time of the peak in the VLA frequency bands (i.e., 1.4 GHz, 4.9 GHz, 8.5 GHz, 15 GHz, and 22.5 GHz bands) by fitting the data with forward shock formula of the form (Frail 2005, IAU Coll. 192, p. 451) given in equation (1) of the reference paper. This formula may not accurately represent the full complexity of the radio lightcurve evolution. However, it is good enough to determine the approximate values for the peak flux density Fm and the time of the peak tm. See the discussion in Section 3.5 of the reference paper for more details and some caveats. For the remaining bursts, the flux density values were taken directly from the data, and hence do not have the best-fit errors for the peak flux, peak time and rest-frame peak time parameters Fm, tm and tm/(1+z), respectively. This table was created by the HEASARC in November 2013 based on CDS catalog J/ApJ/746/156 files table1.dat and table4.dat. This is a service provided by NASA HEASARC .
Fermi 2FGL Unassociated Gamma-Ray Sources Possible Radio Identifications
공공데이터포털
This table contains some of the results from an all-sky radio survey between 5- and 9-GHz of sky areas surrounding all unassociated gamma-ray objects listed in the Fermi Large Area Telescope (LAT) Second Source Catalog (2FGL). The goal of these observations is to find all new gamma-ray active galactic nucleus (AGN) associations with radio sources > 10 mJy at 8GHz. The authors observed with the Very Large Array (VLA) and the Australia Telescope Compact Array (ATCA) the areas around unassociated sources, providing localizations of weak radio point sources found in 2FGL fields at arcminute scales. They then followed up a subset of these with the Very Long Baseline Array (VLBA) and the Long Baseline Array (LBA) in order to confirm detections of radio emission on parsec-scales. The authors quantified association probabilities based on known statistics of source counts and assuming a uniform distribution of background sources. In total, they found 865 radio sources at arcsecond scales as candidates for association and detected 95 of 170 selected for follow-up observations at milliarcsecond resolution. Based on this, they obtained firm associations for 76 previously unknown gamma-ray AGNs. Comparison of these new AGN associations with the predictions from using the Wide-field Infrared Survey Explorer (WISE) color-color diagram shows that half of the associations are missed. The authors found that in 129 out of 588 gamma-ray sources observed at arcminute scales not a single radio continuum source was detected above their sensitivity limit within the 3-sigma gamma-ray localization. These "empty" fields were found to be particularly concentrated at low Galactic latitudes. The nature of these Galactic gamma-ray emitters is not yet determined. A list of 216 target fields were observed with the VLA. The instantaneous bandwidth was split into two parts, with one half centered at 5.0 GHz (4.5 - 5.5 GHz) and the other centered at 7.3 GHz (6.8 - 7.8 GHz). The observations were made on 2012 October 26 and 2012 November 3. See section 2.1 of the reference paper for more details. These data are included in this HEASARC table. During the first campaign with the ATCA from 2012 September 19-20, the authors observed 411 2FGL unassociated sources in a Declination range of -90 degrees to +10 degrees at 5.5 and 9 GHz. The details of this observing campaign and results have been reported by Petrov et al. (2013, MNRAS, 432, 1294: available at the HEASARC as the AT2FGLUS table). The authors detected a total of 424 point sources. In a second ATCA campaign on 2013 September 25-28, the authors re-observed sources that were detected at 5 GHz, but were not detected at 9 GHz. See section 2.2 of the reference paper for more details. These data are included in this HEASARC table. Follow-up observations of 149 targets selected from the VLA and ATCA surveys above -30 degrees Declination were conducted with the VLBA between 2013 Feb-Aug (VCS7 project; 4.128 - 4.608 and 7.392 - 7.872 GHz simultaneously) and in 2013 Jun-Dec (campaign S5272; 7.392 - 7.872 GHz only). See section 2.3 of the reference paper for more details. These data are NOT included in this HEASARC table. For sources with Declination below -30 degrees, the authors added 21 objects to the on-going LCS campaign being conducted using the LBA (Petrov et al. 2011, MNRAS, 414, 2528) in 2013 Mar-2013 Jun at 8.200 - 8.520 GHz. See section 2.4 of the reference paper for more details. These data are NOT included in this HEASARC table. This table was created by the HEASARC in May 2015 based on the union of CDS Catalog J/ApJS/217/4/ files table2.dat (the 148 'Category I' objects that were detected at 5.0/5.5 and/or 7.3/9.0 GHz within 2.7' of the 2FGL counterpart localization), table3.dat (the 501 'Category II' objects that were detected at 5.0/5.5 and/or 7.3/9.0 GHz between 2.7' and 6.5' of the 2FGL counterpart localization) and table4.dat (the 216
CGRO/EGRET Revised Catalog of Gamma-Ray Sources
공공데이터포털
The CGRO/EGRET Revised Catalog of Gamma-Ray Sources (EGR) is a catalog of point gamma-ray sources detected by the EGRET detector on the Compton Gamma Ray Observatory. The authors used the entire EGRET gamma-ray dataset of reprocessed photons at energies above 100 MeV and new Galactic interstellar emission models based on CO, H I, dark gas, and interstellar radiation field data. Two different assumptions are used to describe the cosmic-ray distribution in the Galaxy to analyse the systematic uncertainties in source detection and characterization. The authors applied a 2-dimensional maximum-likelihood detection method similar to that used to analyze the 3rd EGRET catalogue (3EG: Hartman et al. 1999, ApJS, 123, 79, available as the EGRET3 Catalog in Browse). The revised EGRET catalog (EGR) lists 188 sources, 14 of which are marked as confused, in contrast to the 271 entries of the 3rd EGRET (3EG) catalog. The authors do not detect 107 sources discovered previously because additional structure is present in the interstellar background. The vast majority of them were unidentified and marked as possibly extended or confused in the 3EG catalog. In particular, the authors do not confirm most of the 3EG sources associated with the local clouds of the Gould Belt. Alternatively, they have found 30 new sources that have no 3EG counterpart. The new error circles for the confirmed 3EG sources largely overlap the previous ones, but several counterparts of particular interest discussed before, such as Sgr A*, radio galaxies, and several microquasars are now found outside the error circles. The authors cross-correlated the source positions with a large number of radio pulsars, pulsar wind nebulae, supernova remnants, OB associations, blazars and flat radiosources and they found a surprising large number of sources (87) at all latitudes that have no counterpart among the potential gamma-ray emitters. Sources found within a radius of 1.5 PSF FWHM of a very bright source, and/or with very asymmetric TS map contours, are not included in the primary list of EGR sources but are included as EGRc sources herein. The EGRc sources represent significant excesses of photons above the background that may be due to extended sources, or structures not properly modeled in the interstellar emission, or artefacts due to incorrect PSF tails. As noted above, there are 188 sources in this catalog: since there are multiple measurements for these sources corresponding to the various viewing periods, there are 1640 entries in the HEASARC's version of the Revised EGRET Catalog, corresponding to 1512 'observations' of the 174 primary gamma-ray sources plus 128 'observations' of the 14 confused sources. Thus, there are an average of about 9 entries for every gamma-ray source. This table was created by the HEASARC in March 2009 based on the electronic versions of Tables A1 and B1 from the paper, which were obtained from the CDS, their catalog J/A+A/489/849 files egr.dat and egrc.dat. This is a service provided by NASA HEASARC .
Chandra Galactic Bulge Survey Full X-Ray Point Source Catalog
공공데이터포털
This table contains the Chandra source list for the entire area of the Galactic Bulge Survey (GBS) based on the lists provided in Jonker et al. (2011, ApJ, 194, 18: Paper I) and Jonker et al. (2014, ApJS, 210, 18: Paper II). The previous version of this table, based solely on the data presented in Paper I, contained the Chandra source list based on the first three-quarters of the GBS that had been observed as of the date of writing of that paper. Among the goals of the GBS are constraining the neutron star (NS) equation of state and the black hole (BH) mass distribution via the identification of eclipsing NS and BH low-mass X-ray binaries (LMXBs). The latter goal will, in addition, be obtained by significantly enlarging the number of BH systems for which a BH mass can be derived. Further goals include constraining X-ray binary formation scenarios, in particular the common envelope phase and the occurrence of kicks, via source-type number counts and an investigation of the spatial distribution of X-ray binaries, respectively. The GBS targets two strips of 6 degrees by 1 degrees (12 deg2 in total), one above (1o < b < 2o) and the other below (-2o < b < -1o) the Galactic plane in the direction of the Galactic center at X-ray, optical and near-infrared wavelengths. By avoiding the Galactic plane (-1o < b < 1o) the authors limit the influence of extinction on the X-ray and optical emission but still sample relatively large number densities of sources. The survey is designed such that a large fraction of the X-ray sources can be identified from their optical spectra. The X-ray survey, by design, covers a large area on the sky while the depth is shallow, using 2 ks per Chandra pointing. In this way, the authors maximize the predicted number ratio of (quiescent) LMXBs to cataclysmic variables. The survey is approximately homogeneous in depth to a 0.5-10 keV flux of 7.7 x 10-14 erg cm-2 s-1. As of Paper I, the authors had covered about three-fourths (8.3 deg2) of the projected survey area with Chandra observations providing 1234 unique X-ray sources. In Paper II, the authors find 424 additional X-ray sources in the 63 Chandra observations that they report on there. In the papers, the authors discuss the characteristics and the X-ray variability of the brightest of the sources as well as the radio properties from existing radio surveys. They point out an interesting asymmetry in the number of X-ray sources as a function of their Galactic l and b coordinates which is probably caused by differences in average extinction towards the different parts of the GBS survey area. This table was originally ingested by the HEASARC in June 2011 based on an electronic version of Table 3 from Paper I which was obtained from the ApJS web site. The current version of this table was ingested by the HEASARC in January 2014 based on CDS catalog J/ApJS/210,18 file cxogbs.dat, which appears to be the combination of an Table 3 from Paper I with Table 1 from Paper II. This is a service provided by NASA HEASARC .
Fermi LAT Sources Refined Associations Catalog
공공데이터포털
The Fermi-Large Area Telescope (LAT) First Source Catalog (1FGL: Abdo et al. 2010, ApJS, 188, 405) was released in 2010 February and the Fermi-LAT 2-Year Source Catalog (2FGL: Nolan et al. 2012, ApJS, 199, 31) appeared in 2012 April, based on data from 24 months of operations. Since they were released, many follow up observations of unidentified gamma-ray sources have been performed and new procedures for associating gamma-ray sources with potential counterparts at other wavelengths have been developed. In the reference paper, the authors review and characterize all of the associations as published in the 1FGL and 2FGL catalogs on the basis of multi-frequency archival observations. In particular, they locate 177 spectra for the low-energy counterparts that were not listed in the previous Fermi catalogs, and in addition they present new spectroscopic observations of eight gamma-ray blazar candidates. Based on their investigations, the authors introduce a new counterpart category of "candidate associations" and propose a refined classification for the candidate low-energy counterparts of the Fermi sources. They compare the 1FGL-assigned counterparts with those listed in 2FGL to determine which unassociated sources became associated in later releases of the Fermi catalogs. The authors also search for potential counterparts to all of the remaining unassociated Fermi sources. Finally, they prepare a refined and merged list of all of the associations of 1FGL plus 2FGL that includes 2219 unique Fermi objects. This is the most comprehensive and systematic study of all the associations collected for the gamma-ray sources available to the date of this study. The authors conclude that 80% of the Fermi sources have at least one known plausible gamma-ray emitter within their positional uncertainty regions. This table was created by the HEASARC in May 2015 based on CDS Catalog J/ApJS/217/2 file table4.dat. This is a service provided by NASA HEASARC .