데이터셋 상세
미국
Guide Star Catalog 2.3 Cone Search
The Guide Star Catalog II (GSC-II) is an all-sky optical catalog based on 1" resolution scans of the photographic Sky Survey plates, at two epochs and three bandpasses, from the Palomar and UK Schmidt telescopes. This all-sky catalog will ultimately contains positions, proper motions, classifications, and magnitudes in multiple bandpasses for almost a billion objects down to approximately Jpg=21, Fpg=20. The GSC-II is currently used for HST Bright Object Protection and HST pointing. Looking ahead, the GSC-II will form the basis of the Guide Star Catalog for JWST. This was constructed in collaboration with ground-based observatories for use with the GEMINI, VLT and GALILEO telescopes
데이터 정보
연관 데이터
Guide Star Catalog 1.1 Cone Search
공공데이터포털
The GSC-I catalog is an all-sky catalog of positions and magnitudes for approximately 19 million stars and other objects in the sixth to fifteenth magnitude range. The GSC is primarily based on an all-sky, single-epoch collection of Schmidt plates. For centers at +6 degrees and north, a 1982 epoch "Quick V" survey was obtained from the Palomar Observatory, while for southern fields, materials from the UK SERC J survey (epoch = 1975) and its equatorial extension (epoch = 1982) were used.
Guide Star Photometric ConeSearch
공공데이터포털
The Guide Star Catalog (GSC) is a star catalog compiled to support the Hubble Space Telescope with targeting off-axis stars. GSC-II contains 945,592,683 stars out to magnitude 21. Photometric calibrations for GSC2 are available through this interface.All available catalogs are listed at http://archive.stsci.edu/vo/mast_services.html.
Gliese Catalog Stars with Accurate Coordinates and 2MASS Cross-Identifications
공공데이터포털
South Pole Telescope-Sunyarv-Zeldovich (SPT-SZ) Survey Catalog
공공데이터포털
This table contains a catalog of galaxy clusters selected via their Sunyaev-Zel'dovich (SZ) effect signature from 2500 deg2 of South Pole Telescope (SPT) data. This work represents the complete sample of clusters detected at high significance in the 2500 deg2 SPT-SZ survey, which was completed in 2011. A total of 677 (409) cluster candidates are identified above a signal-to-noise threshold xi of 4.5 (5.0). Ground- and space-based optical and near-infrared (NIR) imaging confirms overdensities of similarly colored galaxies in the direction of 516 (or 76%) of the xi > 4.5 candidates and 387 (or 95%) of the xi > 5 candidates; the measured purity is consistent with expectations from simulations. Of these confirmed clusters, 415 were first identified in SPT data, including 251 new discoveries reported in this work. The authors estimate photometric redshifts for all candidates with identified optical and/or NIR counterparts; they additionally report redshifts derived from spectroscopic observations for 141 of these systems. The mass threshold of the catalog is roughly independent of redshift above z ~ 0.25 leading to a sample of massive clusters that extends to high redshift. The median mass of the sample is M500c(rhocrit) ~ 3.5x1014 Msun h70-1, the median redshift is zmed = 0.55, and the highest-redshift systems are at z > 1.4. The combination of large redshift extent, clean selection, and high typical mass makes this cluster sample of particular interest for cosmological analyses and studies of cluster formation and evolution. The South Pole Telescope (SPT) is a 10m diameter telescope located at the National Science Foundation Amundsen-Scott South Pole station in Antarctica. From 2008 to 2011 the telescope was used to conduct the SPT-SZ survey, a survey of ~ 2500 deg2 of the southern sky at 95, 150, and 220 GHz. The survey covers a contiguous region from 20h to 7h in Right Ascension and -65 to -40 degrees in Declination (see, e.g., Figure 1 in Story et al. 2013, ApJ, 779, 86) and was mapped to depths of approximately 40, 18, and 70 microK-arcmin at 95, 150, and 220 GHz, respectively. The authors use optical and in some cases NIR imaging (Blanco Telescope, Magellan/Baade, Magellan/Clay, Swope, MPG/ESO, New Technology Telescope, Spitzer, WISE) to confirm candidates as clusters and to obtain redshifts for confirmed systems (see section 4 of the reference paper for more details). They have also used a variety of facilities to obtain spectroscopic observations of the SPT clusters (including VLT/FORS2 & Gemini/GMOS-S). This HEASARC table contains the total of 677 cluster candidates which were identified above a signal-to-noise threshold of xi = 4.5 in the 2500 deg2 SPT-SZ survey. This table was created by the HEASARC in March 2015 based on an electronic version of Table 4 from the reference paper which was obtained from the CDS as their catalog J/ApJS/216/27 file table4.dat. This is a service provided by NASA HEASARC .
CatalogofGalaxiesObservedbytheEinsteinObservatoryIPC&HRI
공공데이터포털
NGC 6231 Chandra X-Ray Point Source Catalog 2
공공데이터포털
NGC 6231 is a young cluster (age ~2-7 Myr) dominating the Sco OB1 association (distance ~1.59 kpc) with ~100 O and B stars and a large pre-main-sequence stellar population. The authors combine a reanalysis of archival Chandra X-ray data with multi-epoch near-infrared (NIR) photometry from the VISTA Variables in the Via Lactea (VVV) survey and published optical catalogs to obtain a catalog of 2148 probable cluster members. This catalog is 70% larger than previous censuses of probable cluster members in NGC 6231. It includes many low-mass stars detected in the NIR but not in the optical and some B stars without previously noted X-ray counterparts. In addition, the authors identify 295 NIR variables, about half of which are expected to be pre-main-sequence stars. With the more complete sample, they estimate a total population in the Chandra field of 5700-7500 cluster members down to 0.08 Msun (assuming a universal initial mass function) with a completeness limit at 0.5 Msun. A decrease in stellar X-ray luminosities is noted relative to other younger clusters. However, within the cluster, there is little variation in the distribution of X-ray luminosities for ages less than 5 Myr. The X-ray spectral hardness for B stars may be useful for distinguishing between early-B stars with X-rays generated in stellar winds and B-star systems with X-rays from a pre-main-sequence companion (>35% of B stars). A small fraction of catalog members have unusually high X-ray median energies or reddened NIR colors, which might be explained by absorption from thick or edge-on disks or being background field stars. This work makes use of some basic cluster properties available from the literature. Summaries of older studies are provided by Sana et al. (2006, J/A+A/454/1047), available in NGC6231XMM, and Reipurth (2008hsf2.book.....R). Expanded catalogs of cluster members have been provided by Sung et al. (2013, J/AJ/145/37) and Damiani et al. 2016, J/A+A/596/A82 (DMS2016), available at NGC6231CXO. Chandra X-ray observations were made using the imaging array on the Advanced CCD Imaging Spectrometer (ACIS-I; Garmire et al. 2003SPIE.4851...28G). This instrument is an array of four CCD detectors that subtends 17'x17'. The target was observed in 2005 July (Sequence 200307; PI: S. Murray) in two observations (ObsID 5372 and 6291), and the data were retrieved from the Chandra Data Archive. The NIR ZYJHKs data were obtained from the VVV survey (Minniti et al. 2010NewA...15..433M; Saito et al. 2012, Cat. II/337). VVV is a multi-epoch NIR survey that covers both the Galactic bulge and an adjacent Galactic disk region and was carried out using the 4.1 m VISTA telescope on Cerro Paranal. The VVV data were taken with the VISTA Infrared CAMera (VIRCAM; Dalton et al. 2006SPIE.6269E..0XD), a 4x4 array of Raytheon VIRGO 2048x2048 20 micron pixel detectors with a pixel scale of 0.34". In addition to the VVV photometry, public optical or infrared catalogs are available from surveys and publications. We have included VPHAS+ photometry (Drew et al. 2014, J/MNRAS/440/2036), UBVRI (Johnson-Cousins system) and H-alpha photometry from Sung et al. (2013, J/AJ/145/37), and Spitzer/IRAC photometry from the GLIMPSE survey (Benjamin et al. 2003, Cat. II/293). This table was created by the HEASARC in October 2020 based upon the CDS Catalog J/AJ/154/87 file table1.dat, table3.dat, and table5.dat. This is a service provided by NASA HEASARC .
Wide Angle ROSAT Pointed Survey, Second Phase (WARPS-II) Clusters Catalog
공공데이터포털
This table contains the galaxy cluster catalog from the second, larger phase of the Wide Angle ROSAT Pointed Survey (WARPS), an X-ray selected survey for high-redshift galaxy clusters. WARPS is among the largest deep X-ray cluster surveys and is being used to study the properties and evolution of galaxy clusters. The WARPS-II sample contains 125 clusters serendipitously detected in a survey of 301 ROSAT PSPC pointed observations and covers a sky area of 56.7 deg2. Of these 125 clusters, 53 have not been previously reported in the literature. The authors have nearly complete spectroscopic follow-up of the clusters, which range in redshift from z = 0.029 to z = 0.92 with a median redshift of z = 0.29 and they find 59 clusters with z >= 0.3 (29 not previously reported in the literature) and 11 clusters with z >= 0.6 (6 not previously reported). They also define a statistically complete subsample of 102 clusters above a uniform flux limit of 6.5 x 10-14 ergs/cm2/s (0.5 - 2.0 keV). In their paper, the authors also compare their redshifts, fluxes, and detection methods to other similar published cluster surveys and state that they find no serious issues with their measurements or completeness. The list of ROSAT pointings used in WARPS-II is given in Table 1 of the first reference paper. The WARPS-I cluster catalog (the second reference listed below) is also available in Browse as the WARPS table. This table was created by the HEASARC in September 2010 based on the combination of the electronic versions of Tables 2, 3, and 4 from the first reference paper which were obtained from the CDS (their catalog J/ApJS/176/374). This is a service provided by NASA HEASARC .
ATLargeAreaSurvey(ATLAS)ELAIS-S1&CDF-S2.3-GHzSourceCatalog
공공데이터포털
The Australia Telescope Large Area Survey (ATLAS) aims to image a 7 deg2 region centered on the European Large Area ISO Survey - South 1 (ELAIS-S1) field and the Chandra Deep Field South (CDF-S) at 1.4 GHz with high sensitivity (up to sigma ~ 10 uJy) to study the evolution of star-forming galaxies (SFGs) and Active Galactic Nuclei (AGN) over a wide range of cosmic time. The main goal of the present work is to study the radio spectra of an unprecedentedly large sample of sources (~ 2000 observed, ~ 600 detected in both frequencies). This table contains the results from ancillary radio observations at a frequency of 2.3 GHz which were obtained with the Australia Telescope Compact Array (ATCA). It comprises the catalog of sources with measured 1.4 GHz to 2.3 GHz spectral indices (Table 2 in the reference paper), compiled in the framework of ATLAS. It comprises only such sources which have unambiguous detections at both 1.4 GHz and 2.3 GHz, so no upper or lower limits on the spectral index based on non-detections are included. The 2.3-GHz detection limit is 300 uJy (equivalent to 4.5 sigma in the ELAIS-S1 field and 4.0 sigma in the CDF-S). The authors compute spectral indices between 1.4 GHz and 2.3 GHz using matched-resolution images and investigate various properties of their source sample in their dependence on their spectral indices. The authors find the entire source sample to have a median spectral index of -0.74, in good agreement with both the canonical value of -0.7 for optically thin synchrotron radiation and other spectral index studies conducted by various groups. Regarding the radio spectral index Alpha as indicator for source type, they find only marginal correlations so that flat or inverted spectrum sources are usually powered by AGN and hence conclude that, at least for the faint population, the spectral index is not a strong discriminator. They investigate the z-Alpha relation for their source sample and find no such correlation between spectral index and redshift at all. The authors do find a significant correlation between redshift and radio to near-infrared flux ratio, making this a much stronger tracer of high-z radio sources. They also find no evidence for a dependence of the radio-IR correlation on spectral index. This table was created by the HEASARC in August 2012 based on CDS Catalog J/A+A/544/A38 file spix_pub.dat. This is a service provided by NASA HEASARC .
Molonglo Galactic Plane Survey 2nd Epoch Compact Source Catalog
공공데이터포털
This table contains the Molonglo Galactic Plane Survey 2nd Epoch (MGPS-2) Compact Source Catalog. The MGPS-2 was carried out with the Molonglo Observatory Synthesis Telescope (MOST) at a frequency of 843 MHz and with a restoring beam of 45" x 45" cosec |(delta)|, where delta is the declination, making it the highest resolution large-scale radio survey of the southern Galactic plane to date. It covers the range |b| < 10 degrees and 245 < l < 365 degrees, where l and b are the Galactic longitude and latitude, and is the Galactic counterpart to the SUMSS (CDS Cat. VIII/81) Catalog which covers that portion of the southern sky with delta < -30 degrees, |b| > 10 degrees. This version of the catalog (15-Aug-2007) consists of 48850 compact sources, made by fitting elliptical Gaussians in the MGPS-2 mosaics to a limiting peak brightness of 10 mJy/beam. The authors used a custom method (described in the associated reference publication) to remove extended sources from the catalog. Positions in the catalog are accurate to 1" - 2". The authors have carried out an analysis of the compact source density across the Galactic plane and find that the source density is not statistically higher than the density expected from the extragalactic source density alone. See http://www.astrop.physics.usyd.edu.au/mosaics for access to the MGPS-2 mosaic images. This HEASARC table was created in January 2008 based on CDS catalog J/MNRAS/382/382 file mgpscat.dat. This is a service provided by NASA HEASARC .
RCW 38 Chandra X-Ray Point Source Catalog 2
공공데이터포털
This table contains some of the results from a study of the structure of the high-mass star-forming region RCW 38 and the spatial distribution of its young stellar population. Spitzer Infrared Array Camera (IRAC) photometry (3-8 micron) is combined with Two Micron All Sky Survey (2MASS) near-IR data to identify young stellar objects (YSOs) by IR-excess emission from their circumstellar material. Chandra X-ray data are used to identify class III pre-main-sequence stars lacking circumstellar material. The authors identify 624 YSOs: 23 class 0/I and 90 flat spectrum (FS) protostars, 437 class II stars, and 74 class III stars. They also identify 29 (27 new) O star candidates over the IRAC field. Seventy-two stars exhibit IR-variability, including 7 class 0/I and 12 flat spectrum YSOs. A further 177 tentative candidates are identified by their location in the IRAC [3.6] versus [3.6]-[5.8] color-magnitude diagram. The authors find strong evidence of subclustering in the region. Three subclusters were identified surrounding the central cluster, with massive and variable stars in each subcluster. The central region shows evidence of distinct spatial distributions of the protostars and pre-main-sequence stars. A previously detected IR cluster, DB2001_Obj36, has been established as a subcluster of RCW 38. This suggests that star formation in RCW 38 occurs over a more extended area than previously thought. The gas-to-dust ratio is examined using the X-ray derived hydrogen column density, NH and the K-band extinction, and found to be consistent with the diffuse interstellar medium, in contrast with Serpens and NGC 1333. The authors posit that the high photoionizing flux of massive stars in RCW 38 affects the agglomeration of the dust grains. This table contains the list of 536 X-ray sources found in the Chandra data using a three-pass method with the CIAO 3.4 Wavdetect tool. This table was created by the HEASARC in January 2012 based on an electronic version of Table 2 from the reference paper which was obtained from the ApJ website. Some of the values for the name parameter in the HEASARC's implementation of this table were corrected in April 2018. This is a service provided by NASA HEASARC .