데이터셋 상세
미국
Massive Star-Forming Regions Omnibus X-Ray Catalog
This table contains the Massive Star-forming Regions (MSFRs) Omnibus X-ray Catalog (MOXC), a compendium of X-ray point sources from Chandra/ACIS observations of a selection of MSFRs across the Galaxy, plus 30 Doradus in the Large Magellanic Cloud. MOXC consists of 20,623 X-ray point sources from 12 MSFRs with distances ranging from 1.7 kpc to 50 kpc, and comprises Table 3 of the reference paper. In their paper, the authors show the morphology of the unresolved X-ray emission that remains after the cataloged X-ray point sources are excised from the ACIS data, in the context of Spitzer and WISE observations that trace the bubbles, ionization fronts, and photon-dominated regions that characterize MSFRs. In previous work, they have found that this unresolved X-ray emission is dominated by hot plasma from massive star wind shocks. This diffuse X-ray emission is found in every MOXC MSFR, clearly demonstrating that massive star feedback (and the several-million-degree plasmas that it generates) is an integral component of MSFR physics. The Chandra observations used for the Massive Star-forming Regions Omnibus X-ray Catalog (MOXC) are summarized in Table 2 of the reference paper and have dates ranging from 2000-04-03 to 2013-01-31 for the 12 MSFRs: the 7 MYStIX targets NGC 6334, NGC 6357, M 16, M 17, W 3, W 4 and NGC 3576, and the 5 "beyond-MYStIX" targets G333.6-0.2, W 51A, G29.96-0.02, NGC 3603 and 30 Doradus. A similar table to MOXC for other MYStIX targets was presented by Kuhn et al. (2013, ApJS, 209, 27, available as the HEASARC MYSTIXXRAY table). The main difference between that table and the MOXC version is that the present authors have chosen to omit absorption-corrected X-ray source luminosities from the XPHOT algorithm (Getman et al. 2010, ApJ, 708, 1760) herein, because those quantities are given in Broos et al. (2013, ApJS, 209, 32, available as the HEASARC MYSTIXMPCM table) for relevant MYStIX X-ray sources (those classified as pre-main sequence stars). For beyond-MYStIX targets, the authors chose to postpone XPHOT calculations until the X-ray sources were classified, since XPHOT estimates are only appropriate for pre-MS stars. The XPHOT code is available (Getman et al. 2012, Astrophysics Source Code Library, record ascl.soft12002) if others wish to use it on MOXC sources. All photometric quantities in this table are apparent (not corrected for absorption). The HEASARC has used prefixes 'fb_', 'sb_' and 'hb_' (replacing the suffixes '_t', '_s' and '_h' used in the reference paper) on the names of the X-ray photometric quantities which designate the full (total, 0.5 - 8 keV), soft (0.5 - 2.0 keV) and hard (2-8 keV) energy bands. Correction for finite extraction apertures is applied to the ancillary reference file (ARF) calibration products (see Broos et al. 2010, ApJ, 714, 1582, Section 5.3); the total_counts and counts quantities characterize the extraction and are not aperture-corrected. The only calibrated quantities presented are the apparent photon fluxes, in units of photon cm<sup>-2</sup> s<sup>-1</sup> (see Broos et al. 2010, ApJ, 714, 1582, Section 7.4), and estimates for the apparent energy fluxes, in units of erg cm<sup>-2</sup> s<sup>-1</sup> (Getman et al. 2010, ApJ, 708, 1760). This table was created by the HEASARC in October 2014 based on <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/ApJS/213/1">CDS Catalog J/ApJS/213/1</a> files table3.dat (the MOXC X-ray Source Catalog) and table6.dat (the list of MOXC sources in previously published Chandra catalogs). This is a service provided by NASA HEASARC .
데이터 정보
연관 데이터
MCXC Meta-Catalog of X-Ray Detected Clusters of Galaxies
공공데이터포털
The MCXC is the Meta-Catalog of the compiled properties of X-ray detected Clusters of galaxies. This very large catalog is based on publicly available ROSAT All Sky Survey (RASS)-based (NORAS, REFLEX, BCS, SGP, NEP, MACS, and CIZA) and ROSAT serendipitous (160SD, 400SD, SHARC, WARPS, and EMSS) cluster catalogs. Data have been systematically homogenised to an overdensity of 500, and duplicate entries from overlaps between the survey areas of the individual input catalogs have been carefully handled. The MCXC comprises 1743 clusters with virtually no duplicate entries. For each cluster, the MCXC provides three identifiers, a redshift, coordinates, membership in the original catalog, and standardised 0.1 - 2.4 keV band luminosity Lx500, total mass M500, and radius R500, where the 500 suffix means that the quantity has been calculated up to a standard characteristic radius R500, the radius within which the mean overdensity of the cluster is 500 times the critical density at the cluster redshift . The meta-catalog additionally furnishes information on overlaps between the input catalogs and the luminosity ratios when measurements from different surveys are available, and gives notes on individual objects. The MCXC is made available so as to provide maximum usefulness for X-ray, Sunyaev-Zel'dovich (SZ) and other multiwavelength studies. The catalogs and sub-catalogs included in this meta-catalog are listed in Table 1 of the reference paper, and come from the following references:
 Catalog Sub- Reference Title Catalog or CDS Cat. (Author) RASS IX/10 ROSAT All-Sky Bright Source Catalog (1RXS) (Voges+, 1999) BCS BCS J/MNRAS/301/881 ROSAT brightest cluster sample - I. (Ebeling+, 1998) eBCS J/MNRAS/318/333 Extended ROSAT Bright Cluster Sample (Ebeling+ 2000) CIZA X-ray clusters behind the Milky Way CIZAI ApJ, 580, 774 (Ebeling+, 2002) CIZAII J/APJ/662/224 (Kocevski+, 2007) EMSS ApJS, 72, 567 Einstein Extended Medium Sensitivity Survey (Gioia+, 1990) EMSS_1994 ApJS, 94, 583 (Gioia & Luppino, 1994) EMSS_2004 ApJ, 608, 603 (Henry 2004) MACS ApJ, 553, 668 Massive Cluster Survey (Ebeling+, 2001) MACS_MJFV ApJS, 174, 117 (Maughan+, 2008) MACS_BRIGHT MNRAS, 407, 83 (Ebeling+, 2010) MACS_DIST ApJ, 661, L33 (Ebeling+, 2007) NEP NEP J/ApJS/162/304 ROSAT NEP X-ray source catalog (Henry+, 2006) NORAS/ REFLEX NORAS J/ApJS/129/435 NORAS galaxy cluster survey. I. (Boehringer+, 2000) REFLEX J/A+A/425/367 REFLEX Galaxy Cluster Survey Cat (Boehringer+, 2004) SGP SGP J/ApJS/140/239 Clusters of galaxies around SGP (Cruddace+, 2002) SHARC SHARC_BRIGHT J/ApJS/126/209 Bright SHARC survey cluster catalog (Romer+, 2000) SHARC_SOUTH J/MNRAS/341/1093 The Southern SHARC catalog (Burke+, 2003) WARPS WARPSI J/ApJS/140/265 WARPS survey. VI. (Perlman+, 2002) WARPSII J/ApJS/176/374 WARPS-II Cluster catalog. VII. (Horner+, 2008) 160SD 160SD J/ApJ/594/154 160 square degree ROSAT Survey (Mullis+, 2003) 400SD J/ApJS/172/561 400 square degree ROSAT Cluster Survey (Burenin+, 2007) 400SD_SER Serendipitous clusters 400SD_NONSER Not entirely serendipitous clusters 
This table was originally ingested by the HEASARC in October 2011 based on the
CDS catalog J/A+A/534/A109 file mcxc.dat. It was last updated in September 2023 to match the 12-Nov-2011 CDS version of the catalog. This update corrected the missing minus signs in the declinations of 6 clusters and homogenized the Abell object names. This is a service provided by NASA HEASARC .
MassiveYoungStar-FormingComplexStudyinIR&X-Rays:IR-ExcessSources
공공데이터포털
The Massive Young Star-Forming Complex Study in Infrared and X-rays (MYStIX) project provides a comparative study of 20 Galactic massive star-forming complexes with distances between 0.4 and 3.6 kpc. Probable stellar members in each target complex are identified using X-ray and/or infrared data via two pathways: (1) X-ray detections of young/massive stars with coronal activity/strong winds or (2) infrared excess (IRE) selection of young stellar objects (YSOs) with circumstellar disks and/or protostellar envelopes. In this particular study, the authors present the methodology for the second pathway using Spitzer/IRAC, 2MASS, and UKIRT imaging and photometry. Although IRE selection of YSOs is well-trodden territory, MYStIX presents unique challenges. The target complexes range from relatively nearby clouds in uncrowded fields located toward the outer Galaxy (e.g., NGC 2264, the Flame Nebula) to more distant, massive complexes situated along complicated, inner Galaxy sightlines (e.g., NGC 6357, M 17). The authors combine IR spectral energy distribution (SED) fitting with IR color cuts and spatial clustering analysis to identify IRE sources and to isolate probable YSO members in each MYStIX target field from the myriad types of contaminating sources that can resemble YSOs: extragalactic sources, evolved stars, nebular knots, and even unassociated foreground/background YSOs. Applying their methodology consistently across 18 of the target complexes, they produce the MYStIX IRE Source (MIRES) Catalog comprising 20,719 sources, including 8,686 probable stellar members of the MYStIX target complexes. They also classify the SEDs of 9,365 IR counterparts to MYStIX X-ray sources to assist the first pathway, the identification of X-ray-detected stellar members. The MYStIX project, described by Feigelson et al. (2013, ApJS, 209, 26), provides a comprehensive, parallel study of 20 Galactic massive star-forming regions. The basic input data for the MIRES Catalog were near-IR (NIR) and mid-IR (MIR) photometric catalogs. The authors also used NIR and MIR images and mosaics for visualizing the point-source populations with respect to various nebular structures. They provide high-level descriptions of each input catalog in section 2 of the reference paper. This table contains the MYStIX IRE Source (MIRES) Catalog comprising IR data on 20,719 sources, including 8,686 probable stellar members of the MYStIX target complexes, viz., massive star-forming regions (MSFRs), which was given in Table 2 of the reference paper. It does not include the IR data of the above-mentioned 9,365 IR counterparts to MYStIX X-ray sources (the SED Classification of IR Counterparts to MYStIX X-ray sources (SCIM-X Catalog) that were listed in Table 7 of the reference paper. This table was created by the HEASARC in February 2014 based on CDS Catalog J/ApJS/209/31 file table2.dat. This is a service provided by NASA HEASARC .
MassiveYoungStar-FormingComplexStudyinIR&X-Rays:X-RaySourceCatalog
공공데이터포털
The Massive Young Star-forming complex Study in Infrared and X-ray (MYStIX) uses data from the Chandra X-Ray Observatory to identify and characterize the young stellar populations in 20 Galactic (d < 4 kpc) massive star-forming regions. In this present study, the X-ray analysis for Chandra ACIS-I observations of 10 of the MYStIX fields is described, and a catalog of > 10,000 X-ray sources is presented in this table. In comparison to other published Chandra source lists for the same regions, the number of MYStIX-detected faint X-ray sources in a region is often doubled. While the higher catalog sensitivity increases the chance of false detections, it also increases the number of matches to infrared stars. X-ray emitting contaminants include foreground stars, background stars, and extragalactic sources. The X-ray properties of sources in these classes are discussed in the reference paper. The X-ray observations were made with the imaging array on the Advanced CCD Imaging Spectrometer (ACIS-I) on board the Chandra X-Ray Observatory. This array of four CCD detectors subtends 17' x 17' on the sky. The number of different Chandra pointings for each region, the total exposures for these pointings, and details of how the observations were taken are provided in Table 1 of the reference paper. Overall, 29 Chandra ObsIDs are included with typical integration times for a pointing of 40 - 100 ks, sufficient to detect most OB stars and lower-mass pre-main-sequence stars down to ~ 0.5 - 1 solar masses for the MYStIX regions. The 10 MYStIX MSFRs treated herein are listed in Table 2 of the reference paper. The data were acquired from the Chandra Data Archive from 2001 Jan to Mar 2008 for 10 MYStIX fields (the Flame Nebula, RCW 36, NGC 2264, the Rosette Nebula, the Lagoon Nebula, NGC 2362, DR 21, RCW 38, Trifid Nebula and NGC 1893). The X-ray photometry is from Broos et al. (2010, ApJ, 714, 1582; ACIS Extract); see also the CCCP, Broos et al. (2011, ApJS, 194, 2). The source significance quantities (fb_prob_no_src, sb_prob_no_src, hb_prob_no_src and prob_no_src_min) are computed using a subset of each source's extractions chosen to maximize significance (Broos et al. 2010, ApJ, 714, 1582, Section 6.2). The source position and positional uncertainty quantities are computed using a subset of each source's extractions chosen to minimize the position uncertainty (Broos et al. 2010, ApJ, 714, 1582, Sections 6.2 and 7.1). All other quantities are computed using a subset of each source's extractions chosen to balance the conflicting goals of minimizing photometric uncertainty and of avoiding photometric bias (Broos et al. 2010, ApJ, 714, 1582, Sections 6.2 and 7). The observed and absorption-corrected energy fluxes and their associated errors and the estimated hydrogen column densities and their uncertainties are derived using non-parametric procedures (XPHOT, Getman et al. 2010, ApJ, 708, 1760). XPHOT assumes the X-ray spectral shapes of young, low-mass stars, which come from coronal X-ray emission. XPHOT quantities will therefore be unreliable for high-mass stars, for which X-ray emission is associated with the stellar wind. This table was created by the HEASARC in January 2014 based on CDS Catalog J/ApJS/209 27 file xmystix.dat. This is a service provided by NASA HEASARC .
MassiveYoungStar-FormingComplexStudyinIR&X-Rays:Mid-IRSourceCatalogs
공공데이터포털
Spitzer IRAC observations and stellar photometric catalogs are presented for the Massive Young star-forming complex Study in the Infrared and X-ray (MYStIX). MYStIX is a multi-wavelength census of young stellar members of 20 nearby (distances < 4 kpc), Galactic, star-forming regions (SFRs) that contain at least one O-type star. All regions have data available from the Spitzer Space Telescope consisting of GLIMPSE or other published catalogs for 11 regions and results of the authors' own photometric analysis of archival data for the remaining 9 regions. The authors also reduced the GLIMPSE data for the W 3 SFR using the aperture photometry method in order to compare the results obtained using the two methods (see Section 3.4.2 of the reference paper). The reference paper seeks to construct deep and reliable catalogs of sources from the Spitzer images. Mid-infrared study of these regions faces challenges of crowding and high nebulosity. These new catalogs typically contain fainter sources than existing Spitzer studies, which improves the match rate to Chandra X-ray sources that are likely to be young stars, but increases the possibility of spurious point-source detections, especially peaks in the nebulosity. IRAC color-color diagrams help distinguish spurious detections of nebular polycyclic aromatic hydrocarbon (PAH) emission from the infrared excess associated with dusty disks around young stars. The distributions of sources on the mid-infrared color-magnitude and color-color diagrams reflect differences between MYStIX regions, including astrophysical effects such as stellar ages and disk evolution. The GLIMPSE (Galactic Legacy Infrared Mid-Plane Survey Extraordinaire) Survey is a Legacy Science Program of the Spitzer Space Telescope to study star formation in the disk of the Milky Way Galaxy. It contains six MYStIX regions - the Lagoon Nebula, the Trifid Nebula, NGC 6334, the Eagle Nebula, M 17, and NGC 6357 - within the 2-degree wide strip along the Galactic equator (GLIMPSE I and II data releases). Furthermore, Spitzer images and photometry for RCW 38 and NGC 3576 come from the Vela-Carina survey (Majewski et al. 2007, Spitzer Proposal 40791), using a similar observing strategy with mosaicking and photometric analysis as performed with the GLIMPSE pipeline. The authors obtained publicly available raw IRAC images from the Spitzer Heritage Archive for nine MYStIX regions without GLIMPSE coverage. The target list and details of the Astronomical Observation Requests (AORs) are provided in Table 1 of the reference paper. The camera spatial resolutions are FWHM = 1.6" to 1.9" from 3.6 to 8.0um. This table contains the combined IRAC source lists from the GLIMPSE photometry of W 3 and the aperture photometry of the 9 SFRs listed in Table 4, part 1 of the reference paper. This table was created by the HEASARC in February 2014 based on CDS Catalog J/ApJS/209/29 files table2.dat and table3.dat. To distinguish from which table a source originated, the HEASARC has added a parameter called table_number listing the number of the source table, 2 or 3. This is a service provided by NASA HEASARC .
XMM-Newton COSMOS X-Ray Point Source Catalog
공공데이터포털
This table contains the XMM-Newton EPIC COSMOS X-ray point-like source catalog (XMM-COSMOS). The COSMOS survey is a multiwavelength survey aimed to study the evolution of galaxies, AGN and large scale structures. Within this survey, XMM-COSMOS is a powerful tool for detecting AGN and galaxy clusters. The XMM-COSMOS is a deep X-ray survey over the full 2 deg2 of the COSMOS area. It consists of 55 XMM-Newton pointings for a total exposure of ~1.5 Ms with an average vignetting-corrected depth of 40 ks across the field of view and a sky coverage of 2.13 deg2. The analysis was performed using the XMM-SAS data analysis package in the 0.5-2 keV, 2-10 keV and 5-10 keV energy bands. Source detection has been performed using a maximum likelihood technique especially designed for raster scan surveys. The completeness of the catalog as well as log N-log S and source density maps have been calibrated using Monte Carlo simulations. This is the catalogue of point-like X-ray sources detected with the EPIC CCD cameras. The catalogs contains a total of 1887 unique sources detected in at least one band with likelihood parameter det_ml > 10. The survey, which shows unprecedented homogeneity, has a flux limit of ~1.7 x 10-15 erg/cm2/s, ~9.3 x 10-15 erg/cm2/s and ~1.3 x 10-14 erg/cm2/s over 90% of the area (1.92 deg2) in the 0.5-2 keV, 2-10 keV and 5-10 keV energy bands, respectively. This table was created by the HEASARC in April 2009 based on the electronic version of Table 3 from the paper which was obtained from the CDS (their catalog J/A+A/497/635 file catalog.dat). It was last updated in May 2010 to correct the source number for XMMU J100100.7+015947 to be XMMC 129, as indicated by SIMBAD. This is a service provided by NASA HEASARC .
M 31 XMM-Newton Spectral Survey X-Ray Point Source Catalog
공공데이터포털
This table contains the results of a complete spectral survey of the X-ray point sources detected in five XMM-Newton observations along the major axis of M 31 but avoiding the central bulge, aimed at establishing the population characteristics of X-ray sources in this galaxy. One observation of each disc field of M 31 was taken using the EPIC pn and MOS cameras on XMM-Newton in January and June 2002. The authors obtained background-subtracted spectra and lightcurves for each of the 335 X-ray point sources detected across the five observations from 2002. They also correlate their source list with those of earlier X-ray surveys and radio, optical and infra-red catalogs. Sources with more than 50 source counts are individually spectrally fit in order to create the most accurate luminosity functions of M 31 to date. Based on the spectral fitting of these sources with a power law model, the authors observe a broad range of best-fit photon index. From this distribution of best-fit index, they identify 16 strong high mass X-ray binary system candidates in M 31. They show the first cumulative luminosity functions created using the best-fit spectral model to each source with more than 50 source counts in the disc of M 31. The cumulative luminosity functions show a distinct flattening in the X-ray luminosity LX interval 37.0 <~ log LX erg s-1 <~ 37.5. Such a feature may also be present in the X-ray populations of several other galaxies, but at a much lower statistical significance. The authors investigate the number of AGN present in their source list and find that, above LX ~1.4 x 1036 erg s-1, the observed population is statistically dominated by the point source population of M 31. This table was created by the HEASARC in October 2009 based on the electronic version of Table A1 from the reference paper which was obtained from the CDS (their catalog J/A+A/495/733 file tablea1.dat. This is a service provided by NASA HEASARC .
LMC 30 Doradus Complex Chandra X-Ray Point Source Catalog
공공데이터포털
This table contains the results of a study of the X-ray point-source population of the 30 Doradus (30 Dor) star-forming complex in the Large Magellanic Cloud (LMC) using high spatial-resolution X-ray images and spatially-resolved spectra obtained with the Advanced CCD Imaging Spectrometer (ACIS) on board the Chandra X-Ray Observatory. The observation of ~21 ks was made on 1999 September 21 and placed the cluster R136 at the aim point of the ACIS Imaging Array (ACIS-I). This table lists the the X-ray sources detected in the 17' x 17' field centered on R136, the massive star cluster which lies at the center of the main 30 Dor nebula. 20 of the 32 Wolf-Rayet stars in the ACIS field are detected. The cluster R136 is resolved at the sub-arcsecond level into almost 100 X-ray sources, including many typical O3-O5 stars, as well as a few bright X-ray sources which had been previously reported. Over 2 orders of magnitude of scatter in the X-ray luminosity Lx (calculated assuming a distance of 50 kpc) is seen among R136 O stars, suggesting that X-ray emission in the most massive stars depends critically on the details of wind properties and the binarity of each system, rather than reflecting the widely reported characteristic value Lx/Lbol ~ 10-7. Such a canonical ratio may exist for single massive stars in R136, but these data are too shallow to confirm this relationship. Through this and more recent X-ray studies of 30 Dor, the complete life cycle of a massive stellar cluster can be revealed. This HEASARC table contains both the primary high-significance X-ray sources as well as some lower-significance tentative X-ray sources. The latter sources should not be considered definitive. A subsequent Chandra observation of this field, with several times the exposure of this observation, will result in a longer, more complete list of point sources than that given in this paper. This table was created by the HEASARC in February 2007 based on the merger of electronic versions of Tables 1, 2 and 5 from the above reference which were obtained from the AJ website. It does not include the results from the spectral analysis of 49 of the X-ray sources having a photometric significance (signal-to-noise ratio) greater than 2 which are presented in Tables 3 and 4 of the reference paper. This is a service provided by NASA HEASARC .
W 40 Star-Forming Region Chandra X-Ray Point Source Catalog
공공데이터포털
The young stellar cluster illuminating the W40 H II region, one of the nearest massive star-forming regions (SFRs), has been observed with the ACIS detector on board the Chandra X-ray Observatory. Due to its high obscuration, this is a poorly studied stellar cluster with only a handful of bright stars visible in the optical band, including three OB stars identified as primary excitation sources. The authors detect 225 X-ray sources, of which 85% are confidently identified as young stellar members of the region. Two potential distances of the cluster, 260 pc and 600 pc, are used in the paper. Supposing the X-ray luminosity function of SFRs to be universal, it supports a 600 pc distance as a lower limit for W40 and a total population of at least 600 stars down to 0.1 Msun under the assumption of a coeval population with a uniform obscuration. In fact, there is strong spatial variation in Ks-band-excess disk fraction and non-uniform obscuration due to a dust lane that is identified in absorption in optical, infrared, and X-ray. The dust lane is likely part of a ring of material which includes the molecular core within W40. In contrast to the likely ongoing star formation in the dust lane, the molecular core is inactive. The star cluster has a spherical morphology, an isothermal sphere density profile, and mass segregation down to 1.5 Msun. However, other cluster properties, including a <= 1 Myr age estimate and ongoing star formation, indicate that the cluster is not dynamically relaxed. X-ray diffuse emission and a powerful flare from a young stellar object are also reported in the reference paper. This table was created by the HEASARC in March 2011 based on electronic versions of Tables, 1, 2 and 4 of the reference paper which were obtained from the ApJ web site. This is a service provided by NASA HEASARC .
M 83 Chandra X-Ray Point Source Catalog
공공데이터포털
The authors of this table have obtained a series of deep X-ray images of the nearby (4.61 Mpc) galaxy M 83 using Chandra, with a total exposure of 729 ks. Combining the new data with earlier archival observations totaling 61 ks, they find 378 point sources within the D25 contour of the galaxy. The authors find 80 more sources, mostly background active galactic nuclei (AGNs), outside of the D25 contour. Of the X-ray sources, 47 have been detected in a new radio survey of M 83 obtained using the Australia Telescope Compact Array (ATCA). Of the X-ray sources, at least 87 seem likely to be supernova remnants (SNRs), based on a combination of their properties in X-rays and at other wavelengths. The authors attempt to classify the point source population of M 83 through a combination of spectral and temporal analysis. As part of this effort, in the reference paper they carry out an initial spectral analysis of the 29 brightest X-ray sources. The soft X-ray sources in the disk, many of which are SNRs, are associated with the spiral arms, while the harder X-ray sources, mostly X-ray binaries (XRBs), do not appear to be. After eliminating AGNs, foreground stars, and identified SNRs from the sample, the authors construct the cumulative luminosity function (CLF) of XRBs brighter than 8 x 1035 erg s-1. Despite M 83's relatively high star formation rate, the CLF indicates that most of the XRBs in the disk are low mass X-ray binaries (XRBs). The X-ray observations of M 83 in this survey were all carried out with the ACIS-S in order to maximize the sensitivity to soft X-ray sources, such as SNRs, and to diffuse emission. The nucleus of M 83 was centered in the field of the back-illuminated S3 chip to provide reasonably uniform coverage of M 83. In addition to the S3 chip, data were also obtained from chips S1, S2, S4, I2, and I3. All of the observations were made in the "very faint" mode to optimize background subtraction. Observations were spaced over a period of one year from 2010 December to 2011 December, as indicated in Table 1 of the reference paper. The only difference among observations was the roll orientation of the spacecraft and the differing exposure times. All of the observations were nominal, and yielded a total of 729 ks of useful data. In order to maximize their sensitivity and more importantly to improve their ability to identify time variable sources, the authors included in their analysis earlier Chandra observations of M 83 in 2000 and 2001 totaling 61 ks which were obtained by G. Rieke (Prop ID. 1600489) and by A. Prestwich (Prop ID. 267005758). These data were obtained in a very similar manner to that of the present survey, and increased the total exposure to 790 ks. The authors used ACIS EXTRACT (AE) to derive net count rates from the sources in various energy bands: 0.35 - 8.0 keV (total or T), 0.35 - 1.1 keV (soft or S), 1.1 - 2.6 keV (medium or M), 2.6 - 8.0 keV (hard or H), 0.5 - 2.0 keV ("normal" soft band) and 2.0 - 8.0 keV ("normal" hard band). Their choice of these bands was based on a variety of overlapping goals. The broad 0.35 - 8.0 keV band samples the full energy range accessible to Chandra observations. The three bands S, M and H provide energy ranges intended to classify sources on the basis of their hardness ratios. The boundary at 1.1 keV, in particular, is just above the region containing strong features due to Ne and Fe seen in the spectra of most SNRs. The 0.5 - 2.0 keV and 2.0 - 8.0 keV bands are needed because number counts of active galactic nuclei (AGNs) and of X-ray binary populations are normally carried out in these bands and because the 0.5 - 2.0 keV band, encompassing the peak of the response curve, provides better statistics for some purposes than S+M. The AE count rates were used to establish which of the sources in the candidate list were statistically valid. The authors retained any source that had a probability-of-no-source < 5 x
M 33 Deep XMM-Newton Survey X-Ray Source Catalog
공공데이터포털
The authors have obtained a deep 8-field XMM-Newton mosaic of M33 covering the galaxy out to the D25 isophote and beyond to a limiting 0.2-4.5 keV unabsorbed flux of 5 x 10-16 erg cm-2 s-1 (L > 4 x 1034 erg s-1 at the 817 kpc distance of M33). These data allow complete coverage of the galaxy with high sensitivity to soft sources such as diffuse hot gas and supernova remnants (SNRs). In the reference paper, the authors describe the methods they used to identify and characterize 1296 point sources in the 8 fields. They compare their resulting source catalog to the literature, note variable sources, construct hardness ratios, classify soft sources, analyze the source density profile, and measure the X-ray luminosity function (XLF). As a result of the large effective area of XMM-Newton below 1 keV, the survey contains many new soft X-ray sources. The radial source density profile and XLF for the sources suggest that only ~15% of the 391 bright sources with L > 3.6 x 1035 erg s-1 are likely to be associated with M33, and more than a third of these are known SNRs. The log(N)-log(S) distribution, when corrected for background contamination, is a relatively flat power law with a differential index of 1.5, which suggests that many of the other M33 sources may be high-mass X-ray binaries. Finally, the authors note the discovery of an interesting new transient X-ray source, which they are unable to classify. The list of XMM-Newton observations used for this survey is given in Table 1 of the reference paper. The data reduction and source detection techniques are described in Section 3 of this same reference. The unabsorbed energy conversion factors (ECF) values for different energy bands and instruments that were used in this paper are as follows (the units are 1011 counts cm2 erg-1):
 HEASARC Energy Band MOS1 MOS2 PN band prefix (keV) Med Filter Med Filter Thin Filter sb0_ 0.2-0.5 0.5009 0.4974 2.7709 sb1_ 0.5-1.0 1.2736 1.2808 6.006 mb_ 1.0-2.0 1.8664 1.8681 5.4819 hb_ 2.0-4.5 0.7266 0.7307 1.9276 fb_ 0.2-4.5 
This table was created by the HEASARC in July 2015 based on an electronic version of Table 3 of the reference paper, the list of XMM-Newton X-ray point sources detected in a deep 8-field mosaic of M33, which was obtained from the ApJS web site. This is a service provided by NASA HEASARC .